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Abstract. Linearly constrained indefinite quadratic problems play an important role in global opti-
mization. In this paper we study d.c. theory and its local approach to such problems. The new
algorithm, CDA, efficiently produces local optima and sometimes produces global optima. We also
propose a decomposition branch and bound method for globally solving these problems. Finaly
many numerical simulations are reported.

Key words: Linearly constrained quadratic problems, d.c. optimization, d.c. optimization algorithm

(DCA), local optimality, global optimality, decomposition branch and bound method, global ago-
rithm.

1. Introduction

We consider the indefinite quadratic problem over a bounded polyhedral convex
Set:

(1QP,) min{%(Hm,x)Jr(l,x): xeK}

where H is a symmetric indefinite (¢ x ¢) matrix, [ € R?, K is a nonempty
bounded polyhedral set definedas K = {z € R? : Az < a,z > 0} with A being
an (m x g)-matrix, a € R™.

When

n=(5 p)
and the polytopeis defined as

Q={(z,y) €ER" xR® : Az + By < a, A1z < a1, Aoy < az,z > 0,y > O}
we have the problem

(1QP,) min{F(x,y)z (Cz,7) + (c,7)
1
2
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Here, C' is a symmetric positive semi-definite (n x n) matrix, D is a symmetric
negative semi-definite (s x s) matrix, c € R, d € R®, and A isa(m x n)-matrix,
Bisa(m x s)-matrix, A; isa(r x n)-matrix, Az isa (p x s)-matrix, a € R™,
a1 € R", ap € RP. Hence, the objective function of (IQP,) is decomposedin asum
of aconvex part and a concave part.

A special case of (IQP,) is the problem where D is diagonal (i.e., the concave
part is separable):

1Py min{ /() = 5 (Cro) + (er3)

> 1
+>° [dz’yi - EAiyiz] Hz,y) € Q}
i=1

with \; > 0.

We shall show in Section 3 that Problem (IQP;) isin fact a problem of theform
(1QPs). Likewise, Problem (IQP,) can be equivalently transformed into a problem
of the form (IQP3) where the concave variable is separable.

When C' = 0in (IQP3) and the polytope is defined as

Q={(z,y) ER*" xR : Az + By < a,z > 0,y > 0}

we have the linearly constrained concave quadratic problem which has been con-
sidered by several authors (see e.g. Rosen and Pardalos [27], Kalantari and Rosen
[11], Pardalos et a. [13], Phillips and Rosen [26], etc). In this case the global
minimum point is aways attained at least at a vertex of the convex polytope Q.
This property isno longer true when C' # 0. Hence, Problem (1QP3) with C # Ois
likely to be even more difficult to solve computationally than concave programs.
Recently a decomposition branch and bound method was proposed in Phong-An-
Tao [29] for dealing with (IQP3) in the case where C' # 0. This method is based
on normal rectangular subdivisions which exploit the separability of the concave
part in the objective function. In general, the existing algorithms are efficient only
if the number of the concave variablesis small.

Clearly Problem (IQP,) can be considered as a minimization of ad.c. function
over a polytope for which some method developed in global approaches (see e.g.
Tuy [31], Horst et al. [9]) can be applied. For solving (IQP,) in the case where
the number of variables is large, we should avoid the inherent difficulties of this
global optimization problem by using local approaches. In convex approaches to
nonconvex nondifferentiable optimization, Pham Dinh Tao has extensively studied
subgradient methods for solving convex maximization problems ([14]-{18]) and
d.c. optimization problems([20]). Important devel opmentsand improvementsfrom
both theoretical and numerical points of view have been completed since [1], [2],
[21]-24]. These d.c. optimization algorithms (DCA) are actually among the rare
algorithms which allow to solve large-scale d.c. optimization problems. DCA
cannot guarantee globality of computed solutions. Nevertheless they have been
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successfully applied for various large scale concrete d.c. optimization problems
([, [2], [21]H24]).

Themain purpose of thispaper isto discussthe use of DCA for solving Problems
(1QP1) and (1QP,). It should be noted that the d.c. objective function (of the d.c.
optimization problem (P) hereafter) hasinfinitely many d.c. decompositionswhich
may have an important influence on the qualities (robustness, stability, rate of
convergence and global optimality of sought solutions) of DCA. We propose a
“good” d.c. decomposition for which numerical experience indicates that DCA is
efficient for solving (IQP-). In contrast to global algorithms whose the complexity
increases exponentially with the dimension of the concave variable, DCA has the
same behaviour with respect to both dimensions of convex variables and concave
variables. Consequently, they solve these problems when the number of concave
variables is large. For solving (1QP;) we present some d.c. decompositions and
corresponding DCA which seem to be efficient. We propose also a decomposition
branch and bound method for globally solving (IQP;) and (IQP,). These methods
are just a modification of the one in Phong-An-Tao [29] for the general case. We
usethese a gorithmsfor checking globality of the solution computed by DCA when
s < 30. Finaly we provide extensive computational experiments on large-scale
problems.

The paper isdivided into four sections. In the next section we present DCA and
their basic properties whose proofs can be found in An [1], Tao [20], Tao-An [21].
This section contains also main properties concerning polyhedral d.c. optimization
(i.e., either g or h ispolyhedral convexin (P)), in particular the finite convergence
of DCA in polyhedral d.c. optimization. Theseresults show that if C = 0in (IQP,)
our algorithm isfinite. Section 3 is devoted to the solution of (IQP;) and (IQP,) by
DCA. The decomposition method for globally solving these problemsis devel oped
in Section 4 and numerical results are reported in Section 5. Finally we present in
Appendix the decomposition algorithm proposed in [29] for solving (IQP3).

2. D.c. Optimization Algorithms

Let X = R™ be equipped with the canonical inner product (, ). Thedual spaceY” of
X then can beidentified with X itself. TheEuclideannormof X is||z|| = (x, z)Y/2.
Denote I',,(X') the cone of proper lower semi-continuous convex functionson X.
The conjugate function g* of g € T',(X) belongsto I'p(Y") and is defined by

9" (y) = sup{{(z,y) —g(x) : v € X}.

For e > Oand z° € domg, the symbol d.g(x°) denotes the e-subdifferential of ¢
az, i.e

0eg(z°) ={y €Y 1 g(x) > g(z°) + (x —2°,y) — e Ve X},

while dg(z°) stands for the usual (or exact) subdifferential of g at x°.
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D.c. programis of the form
(P) a=inf{f(z)=g(x) —h(z) iz € X} g,hely(X)

(in the sequel we mean +o0o — (+00) = +00). Such afunction f is called d.c.
functionon X and g, h areits d.c. components.
Using the definition of the conjugate function we have

a = inf{g(z) —h(z):z € X}
= inf{g(z) —sup{(z,y) —h*(y) ty €Y} 1z € X}
= inf{B(y) 1y €Y}
with
Bly) = inf{g(z) — ({z,y) + b*(y)) :z € X} (P).

Itisclear that 5(y) = h*(y) — g*(y) if y € domh*, +oo otherwise. Finally we
state the dual problem

a=inf{h*(y) — ¢*(y) : y € domh*}
that is written, according to the above convention, as
(D) a=inf{h*(y) —g"(y) :y € Y}

If « isfinite then domg C dom A and the only values of g — A in dom g intervene
in the search of global and local solution for (P). Thisd.c. duality wasfirst studied
by Toland [30] in a more genera framework. It can be considered as a logical
generalization of Pham Dinh Tao’s works concerning convex maximization [14]—
[17].

Below are the fundamental results concerning the duality of d.c. optimization
givenin[1], [20], [21].

2.1. DUALITY AND GLOBAL OPTIMALITY FOR D.C. OPTIMIZATION

THEOREM 1. ([1],[20], [21]) Let P and D be the solution sets of Problem (P)
and (D) respectively. Then

(i) Oh(z) C Og(z) Yz € P.

(i) 9g*(y) C Or*(y) Vy € D.

(iif) U{Oh(z) : z € P} C D C domh*.

Thefirstinclusion becomesequality if g* is subdifferentiablein D (in particular
if D C ri(domg*) or if ¢g* is subdifferentiable in dom A*). In this case D C
(domag* N domoh*).

(iv) U{dg*(y) : y € D} C P C domg.
Thefirst inclusion becomes equality if & is subdifferentiable in P (in particular if
P C ri(domh) or if h is subdifferentiable in domg). Inthiscase P C (domdg N
domoh).
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COROLLARY 1. ([1],[8],[21]) z* isaglobal optimal solutionto (P) if and only
if

O:h(z*) C deg(x*), Ve >D0.

This global optimality condition is impractical for deriving solution methods to
Problem (P). The algorithms DCA which will be described in 2.3 are based on the
local conditionsfor d.c. optimization.

2.2. DUALITY AND LOCAL OPTIMALITY CONDITIONS FOR D.C. OPTIMIZATION

A point z* is said to be local minimum of g — A if there exists aneighbourhood U
of z* such that g(z*) — h(z*) < g(z) — h(x) for every z € U. z* is said to be
critical point of g — A if dg(z*) N Oh(z*) # 0.

A convex function f on X is said to be essentially differentiable if it satisfies
the following three conditions:

(i) C = int(dom f) # 0,
(i) f isdifferentiable on C,
(iii) limy 00 [|[V.f (2%)|| = +oo for every sequence {z*} which converges to a
point at the boundary of C.

For z € domyg, ¢'(z, d) denotesthe directional derivative of g at z in the direction
d.

: . g(z +td) — g(z)
g (z,d) = Itlfcr)] . .
Let
Py ={z* € X :0h(x*) C dg(z*)}; Dy = {y* €Y : dg(y*) C dh(y*)}.

THEOREM 2. ([1],[20],[30]) (i) If z* isalocal minimumof g — h, thenz* € P;.
(il) z* € Py if and only if

g (z*,d)—h(z*,d) >0, VdeX.

(iii) Let z* beacritical point of g — h. If g and h are essentially differentiable and
(Vg(z),z —z%) > (Vh(z), 7 — z7)

for every z in a neighborhood U of z* then
g(xz) — h(z) > g(z*) — h(z*), Vz eUU.

(iv) Let z* bealocal minimumof g — h. If g* isessentially differentiable then every
point y* € Oh(z*) isalocal minimum of h* — g*.
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For each fixed z* € X we consider the problem

(S(z")) inf{h™(y) — g™ (y) 1y € Oh(z7)}

which is equivalent to the convex maximization one: inf{(z*,y) — ¢*(y) : y €
Oh(z*)}. Similarly, for each fixed y* € Y, by duality, we define the problem

(T(y")) inf{g"(z) —h"(x) : = € dg(y")}.

This problem is equivalent to: inf{(z,y*) — h(z) : x € 0g*(y*)}. Let S(z*),
T (y*) denote the solution sets of Problems (S (z*)) and (T'(y*)) respectively. The
following results concerning the local optimality in duality of d.c. optimization are
the core for the complete form of DCA.

THEOREM 3. ([20], [21]) (i) =* € P, if and only if thereexists y* € S(z*) such
that z* € dg*(y*),i.e.,z* € (0g* o S)(z*).

(ii) y* € Dy if and only if there exists * € T (y*) such that y* € dh(z*), i.e,
y* € (0h o T)(y*).

These characterizations constitute the basis of DCA which will be studied in
Subsection 2.3. In general DCA convergesto alocal solution of d.c. optimization
problem. However it would be interesting to formulate sufficient conditions for
local optimality.

THEOREM 4. If a point z* admits a neighbourhood U such that
Oh(z) N dg(z*) #Dforalz e U (1)

then g(z) — h(z) > g(z*) — h(z*) for all z € U (i.e.,, z* isalocal minimizer of
g — h).

Proof. We have h(z*) > h(z) + (z* — z,y), = € X,Vy € Oh(zx). In
particular h(z) — h(z*) < (x — z*,y),Vo € U,Vy € 0Oh(z) N dg(z*). But
g9(z) —g(z*) > (z—2",y),Vz € U,Vy € Oh(z)Ndg(z"). Henceg(z) —g(z*) >
h(z) — h(z*),Yz € U. O

Polyhedral d.c. optimization will be extensively studied in Subsection 2.4. We
now give someimportant results concerning local optimality for the classof locally
polyhedral convex functions.

Recall that ([4]) aconvex set C islocally polyhedral if, for every =z € C, there
exists a polyhedral convex neighborhood of x relativeto C'. A convex function is
said to be locally polyhedral convex if its epigraph is locally polyhedral convex.
Theindicator function of C' is denoted by

(z) = {o ifz € C
Xc +00 otherwise’

Thelocal polyhedral convexity isageneralized notion of the polyhedral convexity.
The former isintimately related to the diff-max property studied by Durier [4].
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A function ¢ € T',(X) issaid to have diff-max property if for every x € dom
there is a neighbourhood U of z such that dp(u) C dp(z), for every u € U.
It means that each point x € dom is alocal maximum for the subdifferential
0y according to the inclusion relation. The next result due to Durier is worthy of
attention.

THEOREM 5. ([4]) Let ¢ € T',(X). Thefollowing are equivalent

(i) ¢ has the diff-max property,

(ii)  islocally polyhedral convex,

(iii) for every xz € domy, thereisaneighborhood V' of = suchthat ¢y = ¢+ xv
is polyhedral convex.

Moreover, for such a function,dome is locally polyhedral convex, ¢ is con-
tinuous relative to dome, and ¢ is subdifferentiable at each point of its effective
domain.

REMARK 1. If p € T',(X) isfinite on X then ¢ hasthe diff-max property if and
only if for every 2 € X thereisaneighbourhood U such that dp(u) N dp(z) # 0
for al v € U. This result has been earlier remarked in [8]. It can be proved by
using the compactnessof dp(x) for al z € X ([1], [21]).

COROLLARY 2. Assuming & locally polyhedral convex, then
Oh(z*) C Og(z*)

is a necessary and sufficient condition for z* to be alocal minimumof g — h.
Proof. Thisjust combines Theorems1,4 & 5.

REMARK 2. (i) The condition (1) constitutes a sufficient supplementary require-
ment for acritical point z* of ¢ — h to be alocal minimum one.

Itsrealization reliesonthe sizeand thewidth of dg(z*) and Ok (z*) (int(Og(z*))
is nonempty for example) as well as on certain continuity of the (multivalued)
mappings dg and dh ([1], [7], [8], [21]).

(i) For adetailed study of local optimality in d.c. optimization, see[1], [7], [8],
[21]. However, to our knowledge, Theorem 4 is one of the most general results
relative to local minimum of d.c. functions.

2.3. ALGORITHMSFOR D.C. OPTIMIZATION (DCA)

The complete form of DCA is based upon Theorem 3. It allows approximating a
point (z*,y*) € P; x D;. From apoint 2° given in advance, the algorithm consist
of constructing two sequences {z*} and {4*} defined by

Yk e S*); e T(P). )
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From a practical point of view, although this algorithm uses a d.c. decomposition
mentioned above, Problems (S(z*)) and (T'(z*)) remain d.c. optimization pro-
grams. Calculation of 3* and z**1 therefore is still a difficult task. In practice the
following simplified form of DCA is used:

The Simplified Form of DCA:

The philosophy of simplified DCA is quite simple: it consists in the construction
of two sequences {z*} and {y*} (candidates to primal and dual solutions) which
are easy to calculate and satisfy the following conditions:
(i) The sequences (g — h)(z*) and (h* — g*)(y*) are decreasing.
(ii) Every limit point z* (resp. y*) of the sequence {z*} (resp. {y*}) isacritical
point of g — h (resp. h* — g*).

Results concerning local and global optimality in d.c. optimization presentedin
the preceding subsections led us to the following description of simplified DCA.
Namely, for z° € X we define the two sequence {z*} and {y*} by taking

y* € On(z¥);  2Ftt e ag* (yF). 3)

Inter pretation of the simplified DCA:
The construction of the sequences {z*} and {y*} can beinterpreted asfollows:
Accordingto[28], zF11 € dg*(y*) if andonly if y* € Og(2*T1),i.e., g(zF+1) —
(*F*1 kY < g(z) — (z,9*),Vz € X. In other words, z¥*1 is a solution of the
problem given as

min{g(z) — (z,y*) : 2 € X}. 4
Thisis equivaent to
min{g(z) — [a(z") + (z —a*,y")] 12 € X} (Py)

for each k fixed. Buty* € oh(z%),i.e, h(z) > hy(z) = h(z¥)—(z—F, ), Vo €
X. So (P) isaconvex optimization problem obtained from (P) by replacing h by
its affine minorization function hy,(z). Similarly, y* € 0h(z*) meansthat 3* isa
solution of the convex program (D)

min{h*(y) — [¢" (") + (&*,y =y D] 1y e Y} (D)

which is obtained from (D) by using the affine minorization function of ¢* defined
by z¥ € dg* (y*~1). Here we can see a compl ete symmetry between Problems (Py.)
and (D) as well as the sequences {z*} and {y*} relative to the duality of d.c.
optimization.

Itisclear that if h and g* are essentially differentiable then the complete form
and the simplified form of DCA areidentical.

In general when Problem (P) is well defined (i.e. « is finite and the solution
set of (P) is nonempty) we can construct such sequences {z*} and {y*}. More
precisely we have the following resullt:
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LEMMA 1. ([1], [2]) Sequences {z*}, {y*} in DCA are well defined if and only
if

domdg C domoh, domoh* C domdg*.

Convergenceof Simplified DCA

For a convex function f we define p(f) := sup{p > 0: f — §]| - ||? is convex}.
Let p; and p}, (i = 1,2) be real nonnegative numbers such that 0 < p; < p(f;)
(resp. 0 < pf < p(f;")) where p; = 0 (resp. pf = 0) if p(f;) = O (resp. p(f;) = 0)
and p; (resp. p;) may takethevalue p(f;) (resp. p(f;")) if it isattained. We next set
fi=gand f, =h.

Also, let do* = 2F+1 — zF and dy* = y*+1 — 4% For a,b € X, the line
segment connecting them is denoted [a, b]. The following result is an improved
version of the Convergence Theorem 3 and 4 in [20].

THEOREM 6. ([1], [20], [21]) Suppose that the sequences {z*} and {y*} are
defined by the simplified DCA. Then we have

. * * p2 P*
() (=M < (00 ")) - mac{ 2 a2 2 a2}
p1+ p2 2 .
< (g = W) — max { 022 s, 2 a2
P2 k2 ﬁ k—1)2 P_E k2
+ 224 2, L R+ 22 a2

The equality (g — h)(z**1) = (g — h)(z*) holdsif and only if
z¥ € 9g* (y*), yF € oh(zFY)and(p1 + p2)dz* = pidy* T = p3dy* = 0.

In this case
o (g—h)(zF*1) = (h* —g*)(y*) and ¥, z¥*+1 arecritical pointsof g — A satisfying

y* € (9g(z*) N Oh(z*)) and y* € (9g(z*11) N Oh(zF 1)),
e y* isa critical point of h* — ¢* such that

[2*, ¥ (99" (y*) N oK™ (y")),
o oF = 2k if p(g) + p(h) > 0,4% = y*Lif p(¢*) > O and y* = yF+1if
p(h*) > 0.

(if) Smilarly, for duality we have

* * p 2
(0 = )P < (g = Bt - ma{ O a2, 2 a2
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< (0 = ¢")(0") - max{ 2 a2 4 2 a2
PLi g k2 P2y k2 PLY P20 k2
L a2+ 2 a2, B2 a2,
The equality (h* — g*)(v* 1) = (h* — ¢*)(y*) holdsif and only if

" tteag* (yF 1), y* € on(a* )

and
(pi + p3)dy* = podz* = prdz* ™t = 0.
In this case
o (h* — g") (") = (¢ — h)(«FT) and ¥, y**1 are critical points of A* — g*
satisfying
2" e (9g*(y") N Or*(y*)) and 2" € (9g* (v ) N OR* (yF ),
e 2**lisacritical point of g — h such that
", € (Dg(a*+) 0 OR(aH ),

o yF L = ok if p(g*) + p(h*) > 0,281 = 2F if p(h) > 0and 2+t = £F+2if
p(g) > 0.

(iii) If v isfinite then the decreasing sequences { (g — h) (z*)} and { (b* — g*) (v*)}
convergeto thesamelimit 8 > «, i.e,

; _ ky — 1; x % ky _

kHToo (9 — h)(z") k'_')Too (h* = g")(y") = B.

If p(g) + p(h) > Othenlimy_, ;o {zF+1 — 2*} = 0.
If p(g*) + p(h*) > Othenlim_, o {y* ™™ — y*} = 0.
Moreover

lim {g(z") + g*(4*) — (", 4")}

k—4o00
= lim {n(z"*) + h*(y*) — (*,9")} =0,
k——+o00

(iv) If o is finite and the sequences {z*} and {*} are bounded, then for every
limit z* of {z*} (respectively * of {y*}) there exists a cluster point y* of {y*}
(respectively z* of {z*}) such that
o (z*,y7%) € [9g°(y°) N OK* (y*)] x [Dg(a*) N Dh(z*)] and (g — h)(z*) = (h* —
9" )(y*) =B,
o limy, oo{g(aF) + 9" (4%} = limp, oo (a®, o).

Proof. The proof can be done by the same way asin the proofs of Theorems 3
and 4 in Pham Dinh Tao [20] (see[1], [21]). a
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REMARK 3. (i) In practice the simplified DCA usually yields a local minimizer
which isaso global ([1], [2], [21], [23]{24]). Theorem 6 shows how strong con-
vexity of d.c. componentsin primal and dual problemscaninfluence DCA. To make
the d.c. components (of the primal objective function f = g — h) strongly con-
vex we usually apply the following process (the so-called proximal regularization
technique)

f=g=n=(g+3012) = (h+ 30 7).

Inthiscasethed.c. componentsinthedual problemwill bedifferentiable. Similarly
inf-convolution of g and h with %H - 1% will make the d.c. components (in dual
problem) strongly convex and the d.c. components of the primal objective function
differentiable. For adetailed study of regularization techniquesin d.c. optimization,
see[1], [20], [21].

(ii) The main difference between the simplified and the complete DCA liesin the
choiceof y* indh(z*) and z*+1in dg* (y*). The convergenceresult of the complete
DCA is thus improved: in Theorem 6, the nonemptiness of the subdifferentials
intersection is replaced by a subdifferential inclusion ([1], [20], [21]). In other
words the complete DCA yields a pair of elements (z*,y*) € P, x D; (see
Subsection 2.2). So the complete DCA convergesto alocal solution in polyhedral
d.c. optimization problem (see Subsection 2.4).

2.4. PoLYHEDRAL D.C. OPTIMIZATION PROBLEMS AND FINITE CONVERGENCE OF
DCA wiTH FIXED CHOICES OF SUBGRADIENTS

2.4.1. Polyhedral d.c. optimization problems

We supposethat in Problem (P) either g or h is polyhedral convex. We may assume
that / isapolyhedral convex function given by

h(z) = max{(a’,z) — ' 1i=1,...,m} + xc(z)

where x¢ isthe indicator function of a nonempty polyhedral convex set C' in X.
If in (P) g is polyhedral and h is not so, then we consider the dual problem (D),
since ¢g* isthen polyhedral.

Throughout this section we assume that the optimal value « of problem (P)
is finite which implies that domg C domh = C. Thus (P) is equivalent to the
problem

(P) a=inf{g(z) —h(z):z € X}

where h(z) = max{{a’,z) — o/ : i € I}, with T = {1,...,m}. By thisway we
can avoid +o0o — (400) in (P). Clearly

a=inf inf {g(z) — ((a’,z) — a)}. (5)

i€l zeX
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For each: € I, let
(P) B =inf{g(z) — ((a',z) —a') 1z € X}.
The solution set of this problem is dg* (a). Also, let
J@)={iel:p =atadI(z)={i€l:(d' ) —a' =h(z)}.

THIEOREM 7. () z* € Pifand onlyif I(z*) C J(a) and z* € N{dg*(a’) : i €
{.SEP)}: U{dg* (a) 1i € J()}. 1f {ai 1 € I} C domdg* then P % 0.
Proof. (i) Letz* € P andi € I(z*). Then

a=g(z*) —h(z*) = g(z*) — ((a',2) — o)
which meansthat i € J(a) and z* € N{dg*(a*). Thus

I(z*) € J(a) andz* € N{Ag*(a') : i€ I(z*)}.
Conversely, if i € J(a) and z* € dg*(a’) then

a=g(z*) - ((a',z) — o) > g(z*) — h(z")

whichimpliesa = g(z*) — h(z*) and i € I(x*).
(i) isimmediate from (i). O

LEMMA 2. (i) h*(a’) < o', Vi € I. Equality holds if and only if there exists
r € X suchthati € I(z). _ _ o
(i) h(z) = max{{z,y)—h*(y) 1y € co{a’ : i € I}} = max{(a’,x)—h*(a") :
i € T} .
Proof. (i) From the definition of A we have

of > (a',x) —h(z), VreX,Viel
Hence h* (a’) < . If thereexists z € X suchthati € I(z), then
o = (a’,w) = h(z) = h*(a’)
which together with (i) implies 7* (a’) = o
Conversely, suppose that h*(a’) = o' for some i € I. Since (see [28])
domoh* = domh*, there exists z € X such that h(z) = (a’,z) — o’. Hence

i€ I(x). B .
(ii) By thefact domh* = co{a’ : i € I} (see[28]) we have

h(z) = max{(z,y) — h*(y) 1y € co{a’ : i € T}}.
On the other hand, from (i)
h(z) = max{(a’,z) — h*(a’) : i € I}. O
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By Lemma 2 we can write (P) as
a=inf{inf {g(=) — (z,y) + W (y)} iy e{aiel}} (6)

a=inf{inf {g(z) — (z,y) + h*(y)} iy € cofa’ 1 i e I}}. )

Problem (7) is exactly the dual problem (D) of (P)
(D) a=inf{h*(y) — g"(y) 1y € cofa’ :i € I}},

while Problem (6) becomes
a=inf{h*(y) —g*(y) :y € {a’ i € I}}.

Note that, in general, for aconvex set M C X and g, h € [',(X),
inf{g(z) — h(z) : z € co(M)} < inf{g(x) — h(z):z € M}.

Thefollowing result concerning the solution set D of the dual problem (D) can be
proven directly without using Theorem 1.

LEMMA3. J(a) ={ieT:a' €D and h*(d’) = ai};
D>o{a" i€ J(a)}.
Proof. Leti € J(«) then
a=p =inf{g(z) — (', z) —a') 1z € X}
— of — sup{{al,z) — g(x) & € X}
= o' —g*(a') = h*(a") — g*(a')
whichimpliesh*(a’) = of and a’ € D. Conversely, leti € I suchthat o’ € D and
h*(a') = of. Then
a="h(d') - g"(d') = ' — g*(a’).
Thus
B =inf{g(z) — ((a",z) — ')z € X} =a' — g*(a') = .
Hencei € J(«). Theinclusion {a’ : i € J(a)} C D isevident. O

REMARK 4. e Let I' = {i € I : 3z € X, (a’ ) —a = h(z)}. Clearly, the
definition of 7 involvesthe afflnefunctlons(a z) — o' withi e I',i.e,

h(z) = max{(a’,z) — o’ 1i e I'}.

Inthiscaseby Lemma2, h(a’) = o/, Vi € T'.
e From Theorem 1 applying to the dual problem we have
(i) P = U{dg*(z*) : x* € D}, sincedomoh = X.
(ii) D D U{cofa’ :i € I(z*)} : z* € P}.
Thisresult is stronger than that of Lemma 3.
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2.4.2. Finite convergence of DCA
From 2.4.1 we seethat (globally) solving the polyhedral d.c. optimization problem

(P) amounts to solving m convex programs (P;)(i € I). For generating P one
can first determine J(«) and then apply Theorem 7. In practice this can be done
effectively if m isrelatively small. Inthe casewherem islargewe usethesimplified
DCA for solving (locally) Problem ( P). Recall that (Lemma) the simplified DCA
iswell defined if and only if co{a’ : i € I} C domdg*. Thanks to the finiteness
of o one hasdomg C domh = C and co{a’ : i € I} C domg*. The simplified
DCA inthis caseis described simply as follows:

Let z° be chosen in advance. Set
y¥ € Oh(a*) = co{a’ i € I(z*)}; 2t € Dg* (v").

By setting v* = a’,i € I(z*) the calculation of z*+! is reduced to solve the
convex program

(B)  min{g() — (y*,x) - € X).

Notethat if y* = o’ withi € J(«) then, by Theorem 7, zFt1 e P.
Now let H and G* be two mappings respectively defined in domoh = X and
in domdg* such that

H(z) € dh(z), Vz e X andG*(y) € d¢g*(y) Vy € domag*.
Then the simplified DCA with fixed choice of subgradientsis defined as [21]
vk = H(ab) ot = G (o).

It is clear that for a polyhedral d.c. optimization problem range H is finite if &
is polyhedral convex, and range G* is finite if g is polyhedral convex. In each of
these cases the sequences {z*} and {y*} are discrete (i.e., they have only finitely
many different elements).

THEOREM 8. (i) The discrete sequences {(g — 1)(z*)} and { (h* — g*) (y*)} are
decreasing and convergent.
(ii) The discrete sequences {z*} and {y*} are of the same nature: either they
are convergent or cyclic with the same period p. In the latter case the sequences
{z*} and {y*} contain exactly p limit points that are all critical points of g — h.
Moreover if p(g) + p(g*) > 0 then these sequences are convergent.

Proof. Immediate from Theorem 6 and the discrete character of the above
sequences. 0

2.4.3. Natural choice of subgradientsin DCA

Let f € T',(X) and T be aselection of 9f,i.e, Tz € Of (z),Vz € domaf. T is
said to be anatural choice of subgradientsof f if
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e Tz € ridf(x)

e 0f () =0f(2') = Tx =Tx'.

Thefollowing resultsare useful, in the sequel, to the proof of thefinite convergence
of DCA (applying to the polyhedral d.c. optimization) with the fixed choices of
subgradientsfor 4 and ¢g*, and the natural choicefor at |east one polyhedral function
among them. The natural choice has been successfully used in the subgradient-
methods for computing bound norms of matrices ([14]-[17]) and the study of
iterative behaviour of cellular automatas ([19]).

LEMMA 4. Let f € T',(X), thenfor 2°, 2! € X onehas .

() f*(Xiog Aly') = Yop_g AUf*(y"), whenever ya, ...,y € 0f(z°), and X > 0

suchthat % ; A = 1.

(i) ril0f (z°)] N Of (x )#®¢8f( )Caf( b
Proof. (i) Lety = ZZ 1 /\ZyZ with y € 8f(:130), Al
i—1 X' =1Theny € df(«),i.e, f(z°) + f*(y) = (=

F@%) + f(y") = (2% "), Vi=1,... k.
Thus

>0,V =1,....kand
9, 4). On the other hand

+Z AP () = (20, y).

Hence (i).
(i) We suppose that ri[0f(z°)] N df(zY) # 0. Let ° be an element of this
intersection. Since y° € ridf (x0), for every y € 9f (2°) there existsy’ € 9f (z°)
suchthat 1° = ay + (1 — a)y’,0 < a < 1. Thusby virtue of (i)

F°) = o f*(y) + (1= a) f*(y)-
On the other hand, ° € of (=) implies f(z1) + £*(y°) = (z?,4°), from which
follows

F@h) +af*(y) + (1—a)f*(y) = efzt y) + (1 — ) (zhy).
This means that

alf(#h) + W]+ L= )[f (&) + f* ()] = alet, y) + (1 — )zt o).
Note that by the definition of f* we aways have f(z!) + f*(y) > («%,y) and
fat) + f(y) > (&, y). Thus

f@h) + f*(y) = (@t y) and f(zh) + £5()) = (&4 o)
which impliesthat both iy and ¢/’ are elements of O f (). O

Recall h(z) = max{(a’,z) — &’ : i € I'}. Thusone can take H by setting

— Z )\iai

i€l(x)
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where X', i € I(xz) satisfying

(i) X' >0,VieI(z)and X,cpp) N =1,
(ii) \* dependsonly on I(z).

LEMMA 5. (i) 0h(z) = Oh(z') & I(z) = I(2').
(i) H isanatural choice of subgradients of / |f and only if it is defined as above.
Proof. Since ri(dh(z)) = {Xicr@) Mat @ N> 0Vi € I(z)} ([3)), it is

sufficient to show that dh(z) = aﬁ(x') implies I(z) = I(«'). To do this, by
the symmetry, we need to show only that if & € I(z) then k € I(z'). Note that
k € I(z) impliesa® € oh(z')..e,
(a",2') = h(z') + h*(a").
In view of Lemma 2, h*(a*) = o*. Thus
(aF, 2"y — a* = h(z). a
Consider now DCA with fixed choice of subgradient applying to the polyhedral

d.c. optimization presentedin 2.4.1. If H isanatural choiceof £, then thefollowing
result strengthens that of Theorem 8.

THEOREM 9. The simplified DCA with fixed choice of subgradientsisfinite.
Proof. Takep = min{r : 3k > 0, z**" = 2*} (p isthe period of {z*}) and
g = min{r : zP*" = z"}. Then zP ™7 = z9. In virtue of Theorem 6 we have

(9 =) (@) = (g = h)(z"*7) < (g = B)(@PHI7H) <o < (g — h)(27)
which implies

Yt € Oh(z Y foreveryi=1,...,p — 1.
By Lemma 4 one can write

Oh(z?t%) C Oh(z?+ ) foreveryi=1,...,p — 1.

Oh(z9%") = Oh(z9 ) forevery i =1,...,p — 1.
Thusy”* = y? and 2* = 29+, Vk > q. O
We consider now the problem of maximizing aconvex function ¢ on apolytope
C,i.e,g=xcandh=¢gin(P):
(PM) min{xc(z) —¢(z):z € X}.

Clearly (PM) isapolyhedral d.c. problem. Let {z*} and {y*} be generated by the
simplified DCA (with fixed choice of subgradients) such that z* is a vertex of C,
then according to Theorems 8 and 9 we obtain after a finite number of iterations
(z*,y*) such that:
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(i) z* isavertex of C suchthat Vo(z*) € dxc(z*),

(i) Ve*(y*) € Oxo(y") = Ve(z*).
From Theorem 2 (property (iv)) y* isalocal minimumof ¢* — x 7 (i.e., Ox5(y*) =
V*(y*) by Corollary 2) then the vertex z* isalocal minimum of xo — ¢ (i.e., a
local maximum of ¢ on C). But we have from (ii)

¥ =Ve*(y*) € Oxe(y"), ie., y* € Oxco(z™).
So we can state the following result

PROPOSITION 1. Letz* beavertex of C computed by DCAasabove. If Vo(z*) €
int(Oxc(z*)) then z* isalocal maximum of ¢ on C.

Proof. Itisimmediate from the above reasoning since x¢. is then differentiable
aty*. O

Sincethe sufficient conditionin Proposition 1isamost always satisfied, one can
say that in general the simplified DCA (with fixed choice of subgradients and with
{z*} contained in the vertex set of C) converges after afinite number of iterations
to alocal solution of (PM). Similarly it is worth noting that complete DCA (with
fixed choice of subgradients) applying to (PM) (always) converges after a finite
number of iterationsto alocal solution of (PM) ([1], [21]).

3. Solving Problems (1QP;) and (1QP,) by DCA

In this section we use the simplified DCA presented in Subsection 2.3 for solving
Problems (IQPy) and (IQP,). Denoteby ¢g and h thed.c. components of the objective
function of the problem being considered. As indicated before, we try to choose
g and h such that the sequences {z*} and {¢*} in (3) are easy to calculate, i.e,
either {y*} is explicitly defined and the solution of (P;) isinexpensiveor {z*} is
explicitly defined and the solution of (Dy) isinexpensive.

3.1. PROBLEM (IQP»)

One can write (IQP,) in the form
. (1 1
mln{é (w,Cw) + (t,w) — E(w,Dw) :
wEQ:{wG]R"HZAwga,sz}} (8)

whereC and D are (n + s) x (n + s) matrices

e=(5 9 2=(3 %) w=(3) = (3)
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and

A B a
A=14 0|, a=|a1].
0 A a

Clearly C and D are positive semi-definite matrices. Then (8) isad.c. optimization
problem of the form (P) with the following “natural” d.c. decomposition:

1 1
g(w) == 5(w,Cw) + (t,w) + xo(w), h(w) = 3w, Dw) ©
where yq, as before, stands for the indicator function of Q.
First, we observethat h is differentiable and VA (w) = Dw, Vw € R**5, Then,
to apply the simplified DCA, we have to solve, at each iteration k, a problem of
the form (4) given by

min{g(w) — (w, Dw"*) : w € R"*}

for computing w**1.
Our agorithm can be formulated as follows:

ALGORITHM 1. Letw® € R*** begiven. At eachiteration & > 0 compute w**1
by solving the convex quadratic program

@5 min{%(,w,cm (= Dukw) i w e Q}
The stopping criterion is ||w* 1 — wk|| < e.

REMARK 5. (i) The main subroutine in this algorithm is for solving Problem
(Q%) inthe (z,y)-space. The dimensions of the variable  and y do not affect the
complexity for DCA.

(if) From Theorem 6 we seethat if either ¢ or h isstrongly convex then the sequence
{(g— h)(w*)} isstrictly decreasing and limy,_, ; o« ||w*** — w*|| = 0. Thusif both
C'and (— D) are only positive semi-definite then we use the proximal regularization
technique (see Remark 3) for finding a“good” d.c. decomposition. More precisely,
in this case we take

glw) = S, (o +Chu) + (1,1} + X (w),

h(w) = S, (oI + D)) (10)
with any positive number p. The simplified DCA applied to (8) with the decompo-
sition (10) gives exactly Algorithm 1 where C and D are replaced by pI + C and
pI + D respectively. In practice the choice of p may have an important influence
on the qualities of this algorithm. Numerical experiments show that the algorithm
isefficient if p issmall enough (p = 0.0001).
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In the casewhere C' = 0(8) is d.c. polyhedral optimization problem. If in addition
D is positive definite (i.e., D is negative definite) we have

PROPOSITION 2. Algorithm 1 with fixed choice of subgradientsconvergesalmost
alwaysto a local minimum of (8) after a finite number of iterations.

Proof. Immediate from Proposition 1 and from the fact: a positive definite
guadratic form and its conjugate are differentiable. O

3.2. PrOBLEM (IQPy)

We will present here some d.c. decompositions of the objective function in (1QP;)
for which the function h is always differentiable and the gradient of 4 is given
explicitly. Then, asin the solution of (IQP,), the use of thessimplified DCA amounts
to solving, at each iteration k, a problem of the form (4). Besides the spectral
decomposition of H presented hereafter, the following direct d.c. decomposition
seems to be suitable:

o(e) == SUH + pI)a2) + (ba) +xx(@)i h() = Selp ()

where p is a positive number such that (H + pI) is positive semi-definite. Since
Vh(z) = pz, we have:

ALGORITHM 2. Let 2° € R? be given and let p be a positive number such that
(H + pI) is positive semi-definite. At each iteration k& > 0 compute z**1 by
solving the convex quadratic program

min{%((H-l—pI)x,:r) + (I —pa¥ z)x € K}

The stopping criterionis ||zF+1 — zF|| < e.

Nevertheless the “good” d.c. decomposition (9) suggests us to decompose the
objective function of (IQP;) in the form (9). For this some processes have been
studied in [1]. Among them it is worth to note the following d.c. decomposition:
H =W +V where

Wij = Hi; Vi,j € Nandi#j (12)
H;; + a3 ifiel" and(zj# Hi-)—Hiigo

Wi = (13)

and
Vij=0 Vi,je Nandi #j (14)
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H;; + Zi;ﬁj Hij —ap ifiel”and Zi;ﬁj Hij <0
—a3 ifi eIt and (Zj;éi Hij) - H; <0
H;; — Zj;éi H;;i —aq ifi € It and (Zj;éi Hij) —H;; > 0

Vii = (15)

with ; > 0,4 = 1,...,4 such that W is positive semi-definite. For instance a
possible choice of the o; isthat making U diagonally dominant ([32]). We can now
write (IQPy) in the form (1QP3):

min {%(W:r,x) (L z)+ %(vx,@ e K} (16)
and then use the decomposition (9) for solving (16). More precisely, taking
1 1
g(x) = E(W:L",:L") +({l,z) + xx(z); h(x):= E(—V:L",:L") a7)

DCA givesrise to Algorithm 3 which consists of solving

(1
mln{é(Wx,@ +(+Vzkz) iz e K}

at each iteration & for computing z*+1.
In practice it seems that the smaller are the «; the more efficient are DCA for

solving (IQPy).

Finally let uspresent now thed.c. decomposition based on the spectral decompo-
sitionof H.Let A1 < Xy <--- < ), betheeigenvaluesof H whose corresponding
eigenvectors {uyq, . .., u,} constitute an orthogonal basis of R?. We have

H + PAPT (18)

where the diagonal matrix A is diag(\y,..., ;) and P the orthogonal matrix
whose columnsare {ug, ..., ug}.

The first d.c. decomposition of the objective function in (1QP;) is obtained by
writing

H = PAPT + PA,PT = H, + Hy

where A (resp. Ay) isthe diagonal positive semi-definite part (resp. the diagonal
negative semi-definite part) of A, i.e.

(A1) = A if \; > 0,0 otherwisefori =1,...,q
(A2); = A; if A\; < 0,0 otherwisefori =1,....q

DCA applied to the following d.c. decomposition

NI =

o(z) = %(Hw,x)—i—(l,x)—i— (@) h(z) = S (—Ha, z) (19)
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iscalled Algorithm 4.

In parallel by using the change of variablesy = Pz, we can transform (IQP)
into the form (1QP3).
4. A Decomposition Method for Globally Solving (1QP1) and (1QP>2)

We shall present in the Appendix the decomposition branch and bound method
developed in Phong-An-Tao [29] (denoted ALGG) to solve Prablem (IQPs). There
the separability of the concave part is crucial. In this section we show how to use
ALGG for solving (IQP1) and (1QP,).

4.1. ProBLEM (IQP;)

By the d.c. decompositions(11), (17) in Subsection 3.2 one can transform Problem
(IQPy) into the form (IQP3). Observing that the decompoasition (11) can be also
formulated as (17) where W = H + pI and V;; = —p for al 4, in the sequel we
shall consider only the decomposition (17). We have

q
(IQPl)@min{%(W:E,@-l-(l,x)—% ;vixf:xeK} (20)

wherev; = —V;;,2 = 1,...,¢q. Then ALGG can be applied to solve (IQP1) when
g isnot large. The rectangle Ry (cf. Appendix) is now defined as

Ro={z:0< x; SL?}, 1=1,...,q
where L? are the optimal values of ¢ linear programs

max{z; iz € K}, i=1,...,q.
The convex program (RCP) in ALGG (cf. Appendix)

(1~

(RCP) min {§<cx,x> +(ea) + drly) : (z.y) € Dy € R}
is now replaced by

(RCP) min{%(W:v,x) +(l,z) + ph(z) z € KN R}

where

a 1 1
Gh(x) = Pri(wi); by (i) = —5 vi(l; + Li)w; + > vil; L.
=1

According to these modifications, we obtain the modified version ALGG:
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ALGORITHM ALGG 1. Initialization: Solve ¢ linear programs:
max{z; :x € K}, i=1,...,q

to get optimal values LY, i = 1,...,q and set Ry = {z : 0 < z; < L9},
i =1,...,q. Compute ¢7, and solve the convex program

(R,CP1)  min {%(Wx, )+ (I, z) + ¢h(z) m € KN Ro}

to obtain an optimal solution 2o and the optimal value 3(Ro). Set R = {Ro}, Bo =

B(Ro), a0 = f (™) and 2% = zTo.

Iterationk =0,1,2,...,:

k.1. Deleteal R € Ry with 3(R) > «y. Let P, bethe set of remaining rectangles.
If P =  stop: 2" is aglobal optimal solution.

k.2. Otherwise, select R), € P, such that
Br == B(Ry) =min{B(R) : R € Py}

and subdivide Ry, into Ry1, R» according to the normal rectangular subdivi-
sion process “w-subdivision” (cf. Appendix).

k.3. For each Ry1, R;» compute qﬁ}zki and solve

2
to obtain 2% and B(Ry;).
k.4. Set z**1 to the best of the feasible solutions known so far and update vy, 1.
k.5. Set Ry11 := (Px\Ri) U {Rk1, Ri2} and go to the next iteration.

(Ri;CP1)  min {}<W:L‘,ZL‘> +(l,z) + gb}g(:v) e KN R}

REMARK 6. From the numerical point of view, we see that the speed of the
convergence of ALGGL with the decomposition (11) very much depends on the
value p. Numerical experiments show that the nearer p > 0isto

p=Iinf{\ > 0: A\l + H ispositive definite}

the more efficient is the algorithm. This suggests us to calculate the smallest
eigenvalue \1(H) of matrix H for finding p.

4.2. PROBLEM (1QP5)

Using the decomposition (11) for the objective function of Problem (IQP,) we
have

(1QP) & min{F(a,y) = 5(Cr,) + (e.a) + 5D + L)y} + (o)

1 d 2.
5 i'(a)eQ (21)
zp;y T,y }
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where p is a positive number such that (D + pI) is positive semi-definite. So
F(z,y) isdecomposed in a sum of aconvex part
1 -

Filar,y) = 5 (C.2) + {e,) + 3D+ pDyoy)

and a concave part

which is separable.

This interesting decomposition allow us to use ALGG for solving (IQP,). By
(21), the only difference between Problems (IQP3) and (IQP,) lies on the fact in
(IQP,) theconvex term Fy(x, y) of theobjectivefunctionisdefinedin (x, y)-space.
Then the convex program (RCP) in ALGG is replaced by

(RCPy) min{Fyi(z,y) + dr(y) : (z,y) € Qy € R}.

Also, the convex envelope over arectangle R of the concave function F5 is now
defined as

S

Pr(y) = g bR (yi) = { [di - %P(Zi + Li)}yi + %pliLi}.

=1
Hence, we have

ALGORITHM ALGG 2. Initialization: Compute the smallest eigenvalue A1 (D)
of matrix D. Set p = —A1(D) + 0.01. Solve s linear programs:

max{y; : (z,y) € Q}, i=1...,s

to get optimal values LY, i = 1,...,s and Ry = {y : 0 < y; < L9}. Compute ¢g,

7

and solve the convex program
(ROCPZ) mln{Fl(:an) + &Ro(y) : (way) € Qay € RO}
to obtain an optimal solution (z, w') and the optimal value 3(Ro). Set R =
{Ro}, Bo = B(Ro), ao = f(z, w) and (20, y°) = (z0,w).
Iterationk =0,1,2,...:

k.1. Deleteal R € Ry, with 3(R) > «y. Let Py, bethe set of remaining rectangles.
If P, = 0 stop: (z*, y*) isaglobal optimal solution.

k.2. Otherwise, select R), € P, such that
Br == B(Ry) =min{B(R) : R € Py}

and subdivide Ry, into Ry1, Ry according to the normal rectangular subdivi-
sion process “w-subdivision” (cf. Appendix).
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k.3. For each Ry1, R;» compute qﬁ}zki and solve

(RiiCP2)  min{Fi(z,y) + dr,, (y) : (z,y) € Qy € Ryi}
to obtain (2, wi) and B(Ry;).
k.4. Set (zF+1, 1) to the best of the feasible solutions known so far and update
k1.
k.5. Set Ry11 = (Pr\Ri) U {Rk1, Ri2} and go to the next iteration.

Clearly both (RCP) and (RCP,) are considered in the same (z, y)-space. On
the other hand the calculation of A\1(D) when s is moderate size is not expensive.
Thus Problem (IQP,) seemsto be not more difficult to solve computationally than
Problem (1QPs).

5. Numerical Results

In this section we present some computational tests on the performance of our
algorithms for different sets of test problems. Our experiments are composed of
two parts. In the first we study the performance of DCA and the global algorithms
for problems (1QP;), (IQP,) and (IQP3). In the second we provide a comparison
between DCA (with two different decompositions) and an active set method (in
the local approach) for the general problem (IQP,).

The stopping criterion of DCA was actually er < 10~7 where

o= { I} - A > 1,

|kt — 2| otherwise (22)

5.1. THE PERFORMANCE OF DCA AND THE GLOBAL ALGORITHMS

In the first experiment the algorithms have been coded in PASCAL under a Unix
system and run on SUN SPARC-2 station with double precision. We solved 48
randomly selected problems and the problem taken from Floudas and Pardalos [6]
(Problem 1, Table 1). We used the Lemke algorithm for minimizing the convex
guadratic problems over a polytope. The elements of matrices A, B and vectorsa,
¢, d are generated with their signs, so that the feasible region was nonempty and
bounded. (For simplicity we take A; = A, = 0, i.e, the feasible region is Q).
A positive definite matrix C'is constructed following Moré and Sorensen ([12]).
More precisely we set C = QDQ" for some orthogonal matrix ¢ and a diagonal
matrix D. The orthogonal matrix @ of the form Q1(P»)Q3 where

oL
’U)]’U)j

Q=I-2 i=1,23

lw; 11
and the components w; are random numbers in (-1,1). The matrix (—D) is con-
structed by the same procedure. For anindefinite matrix H = QDQ" (inProblems
40-49), the diagonal elements of matrix D are random numbersin (=10, 10).
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Table 1. The performance of Algorithm 1 and ALGG for solving (IQPs)

Pb n s m Algorithm 1 ALGG
iter time value iter time value

1 10 10 10 3 0.10 —49318.01796 5 1.20 —49318.01796
2 10 10 10 2 0.08 —474.9335 6 1.42 —474,9335
3 50 10 10 3 1.27 —8477.3949 5 5.25 —8477.3949
4 50 10 10 4 243 —18410.6544 4 7.77 —18410.6544
S 50 10 10 3 1.82 —1870719.9497 2 313 —1870719.9497
6 50 10 10 14 6.57 —1411.2272 71 107.00 —1411.2272
7 50 10 20 12 16.50 —709.4954 64  236.20 —1053.2883
8 50 20 10 14 15.95 —19745.0002 28 53.60 —19745.0002
9 100 10 10 8 13.00 —17995.4845 9 29.95 —17995.4843
10 100 10 20 &5 21.03 —338032.6704 6 47.82 —338032.6704
11 100 10 20 3 10.90 —37068.4762 10 104.47 —37068.4762
12 100 10 20 5 18.85 —12903.3843 5 37.07 —23172.4911
13 100 20 10 5 8.98 —48122.9213 50 23590 —48122.9213
14 100 20 15 13 68.95 —13033.1788 65  494.48 —21909.2309
15 150 15 20 10 100.8- —165808.8504 22 44562 —165808.8485
16 150 15 20 8 11325 —100712.8212 36  853.00 —100712.8210
17 150 20 20 3 29.48 —461601.5248 25  568.00 —461601.5248
18 150 20 20 3 43.00 —559466.4654 6 207.32 —559446.4654
19 150 20 20 4 35.13 —822692.6431 6 121.93 —822692.6431
20 150 30 20 4 21.02 —625589.0117 7 162.85 —1031057.3468
21 150 30 20 4 39.92 —155964.5034 6 136.58 —155964.4849
2 150 30 20 3 19.47 —137832.6798 5 116.90 —146291.6683
23 200 20 20 12 276 —21845.4611 66 2840.65 —21845.4611
24 200 30 20 30 994.77 —137806.3506 118 7497.70 —137806.2335

Intheglobally algorithms, thedeletionrule 5(R) > «y, wasreplacedby 5(R) >
(a, — €|ag|) so that these algorithms terminate whenever an e-optimal solution z
has been obtained. Table 1 provides the computational results of Algorithm 1 and
the global algorithm ALGG ([29]) for 24 tested problemsin the form (1QP3) when
s < 30.

Table 2 indicatesthe performance of Algorithm 1 and ALGG2 when s < 30for
15 problems in the form (1QP>).

Table 3 contains the computational results of Algorithm 2, Algorithm 3 and
ALGG1 whenn < 30for 10 problemsin the form (IQP,).

Theinitial point of Algorithm 1 is chosen as

wi =0,i=1,...,n,w,, =04L7,i=1,...,s. (23)

)

In Algorithms 2 and 3 we started at the same point zf = 0.4L,i =1,...,n.
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Table 2. The performance of Algorithm 1 and ALGG2 for solving (1QP2)

Pb n s m Algorithm1 ALGG2

iter  time value iter  time value
25 50 10 10 2 0.85 —1965.9444 4 8.42 —3525.0121
26 100 10 20 3 2880 —90.3198 2 30.22 —90.3198
27 100 10 20 9 4192 —4183.5794 9 102.68 —4183.4422
28 100 10 20 7 4102 —689.7835 11  129.80 —964.1756
29 150 20 20 4 1880 —4200835.4290 12 24847 —4200835.4290
30 150 20 20 4  47.02 —3049374.3695 8 201.28 —3049374.3695
31 150 20 20 2 9.07 —15764602.2436 6 136.42 —15764602.2437
32 150 30 20 3 2087 —7190983.3576 103 2968.42 —7274068.8458
33 150 30 20 5 51.05 —2473171.0127 23 64490 —2473177.1578
34 150 30 20 10 10272 —36290.2666 19 51555 —36290.2666
35 30 100 20 5 2248 —125633.58021
36 200 100 20 5 11410 —4071717.3418

37 100 150 20 30 31435 —2175466.0546
38 150 50 20 15 200.53 —131666.07454
39 100 100 20 24 260.82 —230037.8888

For ALGG, ALGG1 and ALGG2 we took ¢ = 1073, In ALGG we used w-
subdivision whichwas shown to bethe best among threetypesof normal rectangular
subdivision givenin [29].

The abbreviations in these tables are the following ones. Pb — Problem; iter —
number of iteration, time — CPU time in seconds; value — value optimal computed
by agorithm.

5.2. COMPARISON BETWEEN DCA AND THE ACTIVE SET METHOD

In the second experiment we solved 20 problems which is the form (1QP;) by
Algorithms 2, 4 ad the active set method. The algorithms have been coded in
MATLAB and run on SUN SPARC-10 station with double precision. The datawas
generated asin Subsection 5.1. For minimizing the convex quadratic problemsover
apolytopein Algorithms 2 and 4 we al so used the active set method. We employed
the function EIG in MATLAB for computing the eigenvalues and eigenvectors of
matrix H in Algorithm 4.

Comments

e From the resultsin the tables 1 and 2 we see that Algorithm 1 with the choice
of starting point (23) isvery efficient: in most problems (19 over 24 for (IQPs) and
7 over 10 for (1QP,)) its computed solution isa global solution.
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Table4. The performance of Algorithms 3, 4 and active set method for solving (IQP:)

Pb ¢ m  Algorithm 2 Algorithm 4 Active set method
iter value iter value value
50 10 5 10 —15528 4 —44.35 -0.11
51 10 10 17 —21804 8 —218.04  -0.02
52 15 10 11 —-12662 6 —126.63 0.89
53 20 20 21 12264 7 —122.66 —0.02
54 30 10 14 —54952 4 —549.58 6.09
55 30 15 24 —36363 9 —363.67 —6.98
56 30 20 18 —-19845 7 -167.11 4.96
57 40 10 14 —879%4.4 7 —879%4.4 —0.08
58 40 20 19 —-86297 7 —862.97 181
59 50 20 8 —3825.2 5 —3825.2 6.16
60 60 20 26 —2610.5 9 —2617.1 10.33
61 70 20 14 —8865.8 5 —8870.7 —6.05
62 100 20 15 —338930 6  —192800 0.06
63 100 20 18 —826670 10 —394260 0.12
64 100 50 17 —6534.2 5 —6475.6 8.97
65 150 20 20 —220760 4  —185220 —1.66
66 150 30 28 —170300 5 —170330 15.66
67 150 50 13 —22546 11 —24760 4.69
68 200 20 13  —109500 5 —109510 171
69 200 30 19 —152620 8 —152650 —8.29

e Table 3 showsthat in general Algorithm 3 is more efficient than Algorithm 2.
Note that the choice of «;, 7 = 1, ..., 4 (resp. p) for agorithms 3 (res. algorithm
2) isvery important.

e Table 4 indicates that the solutions provided by the active set method are very
bad. Moreover we observe that Algorithm 4 is faster than Algorithm 2 while the
approximate optimal value given by the latter is smaller than that provided by the
former. ¢ DCA terminates very rapidly; the average number of iterationsis 7, 26,
19 and 7 for Algorithms 1, 2, 3 and 4 respectively.

e DCA can work with problems where the number of both convex and concave
variable may be large.
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Appendix
A Decomposition Method for Solving Problem (I1QP3) ([29])

One considers Problem (IQP3)

(Cz,z) + {c,x)

NI =

(QP)  min{ £(z.y) = fa(e) + 12(0) =
s 1

+ d;y;i — = N 12 : €T, Q

;[ vi— y} (z,y) € }

with A; > 0.

The method presented here should be efficient for large-scale (1QP3) problems,
when the number of variablesthat enter the concave part of the objective function
is small in comparison with the total humber of variables. The separability of
the concave part motivates the use of rectangular subdivision. First a rectangular
domain Ry C R® isconstructed that containsthe projection of Q2 inthey-space. This
rectangleisthen divided into smaller and smaller subrectangles. For each rectangle
R aconvex underestimating function f1(x)+¢(y) of theoriginal objectivefunction
f(x,y) isconstructed and the convex minimization problem

mm{fl(x) + ¢(y) : (x,y) € va € R}

issolved. The solution of this convex program gives both alower and upper bound
for the optimal value of the problem

min{fi(z) + f2(y) : (z,y) € Q,y € R}.

The branch-and-bound procedure is then applied to discard regions which cannot
contain any global minimizer and eventually to locate an optimal solution.

To construct the smallest rectangular domain Ry C R® which contain the
projection of 2 on the y-space, one solves s linear programming problems

max{y; st (z,y)€eQ}, i=1...,s

to get optimal values L9, i = 1,...,s. The rectangular domain can then be
expressed as

Ro={y:0<y <L?.

a) Lower bounding
Let R ={y:l; <y; < L;} bearectanglein R*. Asusual, one hasthe convention
that the infinitum of an empty setis +oco.

A standard method for lower bounding in branch and bound algorithms is
to use convex underestimators of the objective function. Since concave function
fa(y) = 3-7-1 qi(y:) isseparable, its convex envelopeover arectangle R issimply
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the sum of affinefunction ¢ r; (;) that agreeswith ¢; at the endpointsof the segment
[l;, L;], i.e. thefunction (cf. [11], [27], [25], etc.)

dr(y) = bri(yi) (24)
i—1
where ¢r; (y;) is given explicitly by
1 1
bri(yi) = [di —5 il + L) | i + > Aili L. (25)

So fi(z) + ¢r(y) is a convex underestimating function of f(z,y) over the
domain {(z,y) € R* x R® : (z,y) € Q,y € R}. The solution to the convex
program

(RCP) mln{fl(w) + ¢R(y) : (way) € Qay € R}
provides apoint (2, w™) such that
fi(@") + ¢r(w™) <min{f(z,y) : (z,y) € Q,y € R} < f(z™,w™) (26)

i.e. B(R) = f1(z®) + ¢pr(w™) isalower bound for f over R and f(z, w") isan
upper bound for the global optimal value f,.

b) Normal rectangular subdivision (NRS)

The concept of anormal rectangular subdivision asintroduced by Tuy (seee.g.
Horst-Tuy [10] (Definition VI1.7)).

Let R ={y:1; <y; < L;} bearectangleand let ¢r(y) be the above defined
convex underestimator of f»(y) over R. Denote by (2%, w™) and 3(R) an optimal
solution and the optimal value, respectively, of the convex program (RC P).

Consider now a rectangular subdivision process in which arectangle is subdi-
vided into subrectangles by means of a finite number of hyperplanes paralel to
certain facets of the orthant R’ . Such a process generates a family of rectangles
which can be represented by a tree with root Ry and such that a node is a suc-
cessor of another one if and only if it represents an element of the partition of
the rectangle corresponding to the latter node. An infinite path in this tree corre-
spondsto an infinite nested sequence of rectangles Ry, h = 0,1, ... For each h let

(xhvwh) = (:Ethth)a ¢h(y) = ¢Rh (y)
DEFINITION 1. A nested sequence Ry, is said to be normal if
1imy, oo | f2(w") = ¢ (w")] = O. 27

A rectangular subdivision processissaid to benormal if any infinite nested sequence
of rectanglesthat it generatesis normal.
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Suppose now that an NRS process has been defined. One can construct thefollowing
branch and bound algorithm for solving (IQPs).

c) Algorithm ALGG
Initialization: Compute the enclosing rectangle Ry by solving s linear programs.
Compute ¢, and solve the convex program

(RoCP)  min{f1(x) + ¢r,(y) : (z,y) € Xy € Ro}

to obtain an optimal solution (z, w'°) and the optimal value 5(Ry). Set Py =

{Ro}, Bo = B(Ro), a0 = f (o, ) and (z°,y0) = (zFo, who).

Iterationk =0,1,2,...

k.1. Deleteal R € Ry with 3(R) > «y. Let P, bethe set of remaining rectangles.
If P = 0 stop: (z*,y*) isaglobal optimal solution.

k.2. Otherwise, select R), € P, such that
Br := B(R) = min{B(R) : R € Py}.

and subdivide Ry, into Ry, Ri» according to the chosen normal rectangular
subdivision process.

k.3. For each Ry, Ri> compute ¢, , and solve
(RkiCP)  min{fi(z) + ér,,; (y) : (z,y) € Uy € Ry}
to obtain (2, wi) and B(Ry;).
k.4. Set (zF+1,y**1) to the best of the feasible solutions known so far and update
k1.
k.5. Set Pr11:= (Pr\Rk) U {Rk1, Rr2} and go to the next iteration.

Normal rectangular subdivision process Some methods for constructing normal
rectangular subdivision (NRS) process are discussed in [29]. We present here the
w-subdivision processwhich was shown to bethe best among threety pes of normal
rectangular subdivision givenin [29].

w-subdivision: (Falk and Soland [5])
For the selected Ry, B(Ry) < f(z*,4*), hence,

fa(w") = ¢ (w*) > 0.
Choose an index 7, satisfying

ik € afgmfx{fzi(w?) — fri(wf)}
and subdivide Ry, into two subrectangles

Rpi={y€Ry:yi, <wf}, Rpz={y€Ry:y, >w}
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THEOREM 10. (i) If the Algorithm terminates at iteration % then (z*,y*) every
accumulation point of which isa global optimal solution of (IQP,), and

ar \ fes  Br  fe
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