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Abstract. Linearly constrained indefinite quadratic problems play an important role in global opti-
mization. In this paper we study d.c. theory and its local approach to such problems. The new
algorithm, CDA, efficiently produces local optima and sometimes produces global optima. We also
propose a decomposition branch and bound method for globally solving these problems. Finally
many numerical simulations are reported.
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1. Introduction

We consider the indefinite quadratic problem over a bounded polyhedral convex
set:

(IQP1) min
�

1
2
hHx; xi+ hl; xi : x 2 K

�

where H is a symmetric indefinite (q � q) matrix, l 2 R
q , K is a nonempty

bounded polyhedral set defined as K = fx 2 R
q : Ax � a; x � 0g with A being

an (m� q)-matrix, a 2 R
m .

When

H =

� ~C 0
0 D

�

and the polytope is defined as


 = f(x; y) 2 R
n � R

s : ~Ax+By � a;A1x � a1; A2y � a2; x � 0; y � 0g

we have the problem

(IQP2) min
�
F (x; y) =

1
2
h ~Cx; xi+ hc; xi

+
1
2
hDy; yi+ hd; yi : (x; y) 2 


�
:
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254 LE THI HOAI AN AND PHAM DINH TAO

Here, ~C is a symmetric positive semi-definite (n � n) matrix, D is a symmetric
negative semi-definite (s� s) matrix, c 2 R

n , d 2 R
s , and ~A is a (m� n)-matrix,

B is a (m � s)-matrix, A1 is a (r � n)-matrix, A2 is a (p � s)-matrix, a 2 R
m ,

a1 2 R
r , a2 2 R

p . Hence, the objective function of (IQP2) is decomposed in a sum
of a convex part and a concave part.

A special case of (IQP2) is the problem where D is diagonal (i.e., the concave
part is separable):

(IQP3) min
�
f(x; y) =

1
2
h ~Cx; xi+ hc; xi

+
sX

i=1

�
diyi �

1
2
�iy

2
i

�
: (x; y) 2 


�

with �i > 0.
We shall show in Section 3 that Problem (IQP1) is in fact a problem of the form

(IQP3). Likewise, Problem (IQP2) can be equivalently transformed into a problem
of the form (IQP3) where the concave variable is separable.

When ~C � 0 in (IQP3) and the polytope is defined as

�
 = f(x; y) 2 R
n � R

s : Ax+By � a; x � 0; y � 0g

we have the linearly constrained concave quadratic problem which has been con-
sidered by several authors (see e.g. Rosen and Pardalos [27], Kalantari and Rosen
[11], Pardalos et al. [13], Phillips and Rosen [26], etc). In this case the global
minimum point is always attained at least at a vertex of the convex polytope �
.
This property is no longer true when ~C 6� 0. Hence, Problem (IQP3) with ~C 6� 0 is
likely to be even more difficult to solve computationally than concave programs.
Recently a decomposition branch and bound method was proposed in Phong-An-
Tao [29] for dealing with (IQP3) in the case where ~C 6� 0. This method is based
on normal rectangular subdivisions which exploit the separability of the concave
part in the objective function. In general, the existing algorithms are efficient only
if the number of the concave variables is small.

Clearly Problem (IQP2) can be considered as a minimization of a d.c. function
over a polytope for which some method developed in global approaches (see e.g.
Tuy [31], Horst et al. [9]) can be applied. For solving (IQP2) in the case where
the number of variables is large, we should avoid the inherent difficulties of this
global optimization problem by using local approaches. In convex approaches to
nonconvex nondifferentiable optimization, Pham Dinh Tao has extensively studied
subgradient methods for solving convex maximization problems ([14]–[18]) and
d.c. optimization problems ([20]). Important developments and improvements from
both theoretical and numerical points of view have been completed since [1], [2],
[21]–[24]. These d.c. optimization algorithms (DCA) are actually among the rare
algorithms which allow to solve large-scale d.c. optimization problems. DCA
cannot guarantee globality of computed solutions. Nevertheless they have been
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LINEARLY CONSTRAINED INDEFINITE QUADRATIC PROBLEMS 255

successfully applied for various large scale concrete d.c. optimization problems
([1], [2], [21]–[24]).

The main purpose of this paper is to discuss the use of DCA for solving Problems
(IQP1) and (IQP2). It should be noted that the d.c. objective function (of the d.c.
optimization problem (P ) hereafter) has infinitely many d.c. decompositions which
may have an important influence on the qualities (robustness, stability, rate of
convergence and global optimality of sought solutions) of DCA. We propose a
“good” d.c. decomposition for which numerical experience indicates that DCA is
efficient for solving (IQP2). In contrast to global algorithms whose the complexity
increases exponentially with the dimension of the concave variable, DCA has the
same behaviour with respect to both dimensions of convex variables and concave
variables. Consequently, they solve these problems when the number of concave
variables is large. For solving (IQP1) we present some d.c. decompositions and
corresponding DCA which seem to be efficient. We propose also a decomposition
branch and bound method for globally solving (IQP1) and (IQP2). These methods
are just a modification of the one in Phong-An-Tao [29] for the general case. We
use these algorithms for checking globality of the solution computed by DCA when
s � 30. Finally we provide extensive computational experiments on large-scale
problems.

The paper is divided into four sections. In the next section we present DCA and
their basic properties whose proofs can be found in An [1], Tao [20], Tao-An [21].
This section contains also main properties concerning polyhedral d.c. optimization
(i.e., either g or h is polyhedral convex in (P )), in particular the finite convergence
of DCA in polyhedral d.c. optimization. These results show that if ~C � 0 in (IQP2)
our algorithm is finite. Section 3 is devoted to the solution of (IQP1) and (IQP2) by
DCA. The decomposition method for globally solving these problems is developed
in Section 4 and numerical results are reported in Section 5. Finally we present in
Appendix the decomposition algorithm proposed in [29] for solving (IQP3).

2. D.c. Optimization Algorithms

LetX = R
n be equipped with the canonical inner product h; i. The dual space Y of

X then can be identified withX itself. The Euclidean norm ofX is kxk = hx; xi1=2.
Denote �o(X) the cone of proper lower semi-continuous convex functions on X .
The conjugate function g� of g 2 �o(X) belongs to �0(Y ) and is defined by

g�(y) = supfhx; yi � g(x) : x 2 Xg:

For � > 0 and xo 2 dom g, the symbol @�g(xo) denotes the �-subdifferential of g
at xo, i.e.

@�g(x
o) = fy 2 Y : g(x) � g(xo) + hx� xo; yi � � 8x 2 Xg;

while @g(xo) stands for the usual (or exact) subdifferential of g at xo.
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D.c. program is of the form

(P ) � = infff(x) = g(x) � h(x) : x 2 Xg g; h 2 �o(X)

(in the sequel we mean +1� (+1) = +1). Such a function f is called d.c.
function on X and g; h are its d.c. components.

Using the definition of the conjugate function we have

� = inffg(x) � h(x) : x 2 Xg

= inffg(x) � supfhx; yi � h�(y) : y 2 Y g : x 2 Xg

= inff�(y) : y 2 Y g

with

�(y) = inffg(x) � (hx; yi+ h�(y)) : x 2 Xg (Py):

It is clear that �(y) = h�(y) � g�(y) if y 2 domh�, +1 otherwise. Finally we
state the dual problem

� = inffh�(y)� g�(y) : y 2 domh�g

that is written, according to the above convention, as

(D) � = inffh�(y)� g�(y) : y 2 Y g:

If � is finite then dom g � domh and the only values of g � h in dom g intervene
in the search of global and local solution for (P ). This d.c. duality was first studied
by Toland [30] in a more general framework. It can be considered as a logical
generalization of Pham Dinh Tao’s works concerning convex maximization [14]–
[17].

Below are the fundamental results concerning the duality of d.c. optimization
given in [1], [20], [21].

2.1. DUALITY AND GLOBAL OPTIMALITY FOR D.C. OPTIMIZATION

THEOREM 1. ([1], [20], [21]) Let P and D be the solution sets of Problem (P )
and (D) respectively. Then

(i) @h(x) � @g(x) 8x 2 P .
(ii) @g�(y) � @h�(y) 8y 2 D.
(iii) [f@h(x) : x 2 Pg � D � domh�.
The first inclusion becomes equality if g� is subdifferentiable inD (in particular

if D � ri(dom g�) or if g� is subdifferentiable in dom h�). In this case D �
(dom@g� \ dom@h�).

(iv) [f@g�(y) : y 2 Dg � P � dom g.
The first inclusion becomes equality if h is subdifferentiable in P (in particular if
P � ri(domh) or if h is subdifferentiable in dom g). In this case P � (dom@g \
dom@h).
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COROLLARY 1. ([1], [8], [21]) x� is a global optimal solution to (P ) if and only
if

@"h(x
�) � @"g(x

�); 8" > 0:

This global optimality condition is impractical for deriving solution methods to
Problem (P ). The algorithms DCA which will be described in 2.3 are based on the
local conditions for d.c. optimization.

2.2. DUALITY AND LOCAL OPTIMALITY CONDITIONS FOR D.C. OPTIMIZATION

A point x� is said to be local minimum of g � h if there exists a neighbourhood U
of x� such that g(x�) � h(x�) � g(x) � h(x) for every x 2 U . x� is said to be
critical point of g � h if @g(x�) \ @h(x�) 6= ;.

A convex function f on X is said to be essentially differentiable if it satisfies
the following three conditions:

(i) C = int(dom f) 6= ;,
(ii) f is differentiable on C ,
(iii) limk!1 krf(xk)k = +1 for every sequence fxkg which converges to a

point at the boundary of C .
For x 2 dom g, g0(x; d) denotes the directional derivative of g at x in the direction
d.

g0(x; d) = lim
t#0

g(x+ td)� g(x)

t
:

Let

Pl = fx� 2 X : @h(x�) � @g(x�)g;Dl = fy� 2 Y : @g(y�) � @h(y�)g:

THEOREM 2. ([1], [20], [30]) (i) If x� is a local minimum of g�h, then x� 2 Pl.
(ii) x� 2 Pl if and only if

g0(x�; d)� h0(x�; d) � 0; 8d 2 X:

(iii) Let x� be a critical point of g� h. If g and h are essentially differentiable and

hrg(x); x � x�i � hrh(x); x� x�i

for every x in a neighborhood U of x� then

g(x)� h(x) � g(x�)� h(x�); 8x 2 U:

(iv) Let x� be a local minimum of g�h. If g� is essentially differentiable then every
point y� 2 @h(x�) is a local minimum of h� � g�.
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For each fixed x� 2 X we consider the problem

(S(x�)) inffh�(y)� g�(y) : y 2 @h(x�)g

which is equivalent to the convex maximization one: inffhx�; yi � g�(y) : y 2
@h(x�)g. Similarly, for each fixed y� 2 Y , by duality, we define the problem

(T (y�)) inffg�(x)� h�(x) : x 2 @g(y�)g:

This problem is equivalent to: inffhx; y�i � h(x) : x 2 @g�(y�)g. Let S(x�),
T (y�) denote the solution sets of Problems (S(x�)) and (T (y�)) respectively. The
following results concerning the local optimality in duality of d.c. optimization are
the core for the complete form of DCA.

THEOREM 3. ([20], [21]) (i) x� 2 Pl if and only if there exists y� 2 S(x�) such
that x� 2 @g�(y�); i:e:; x� 2 (@g� � S)(x�).
(ii) y� 2 Dl if and only if there exists x� 2 T (y�) such that y� 2 @h(x�), i.e.,
y� 2 (@h � T )(y�).

These characterizations constitute the basis of DCA which will be studied in
Subsection 2.3. In general DCA converges to a local solution of d.c. optimization
problem. However it would be interesting to formulate sufficient conditions for
local optimality.

THEOREM 4. If a point x� admits a neighbourhood U such that

@h(x) \ @g(x�) 6= ; for all x 2 U (1)

then g(x) � h(x) � g(x�) � h(x�) for all x 2 U (i.e., x� is a local minimizer of
g � h).

Proof. We have h(x�) � h(x) + hx� � x; yi; x 2 X;8y 2 @h(x). In
particular h(x) � h(x�) � hx � x�; yi;8x 2 U;8y 2 @h(x) \ @g(x�). But
g(x)�g(x�) � hx�x�; yi;8x 2 U;8y 2 @h(x)\@g(x�). Hence g(x)�g(x�) �
h(x)� h(x�);8x 2 U . �

Polyhedral d.c. optimization will be extensively studied in Subsection 2.4. We
now give some important results concerning local optimality for the class of locally
polyhedral convex functions.

Recall that ([4]) a convex set C is locally polyhedral if, for every x 2 C , there
exists a polyhedral convex neighborhood of x relative to C . A convex function is
said to be locally polyhedral convex if its epigraph is locally polyhedral convex.
The indicator function of C is denoted by

�C(x) =

�
0 if x 2 C

+1 otherwise
:

The local polyhedral convexity is a generalized notion of the polyhedral convexity.
The former is intimately related to the diff-max property studied by Durier [4].
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A function ' 2 �o(X) is said to have diff-max property if for every x 2 dom'

there is a neighbourhood U of x such that @'(u) � @'(x), for every u 2 U .
It means that each point x 2 dom' is a local maximum for the subdifferential
@' according to the inclusion relation. The next result due to Durier is worthy of
attention.

THEOREM 5. ([4]) Let ' 2 �o(X). The following are equivalent
(i) ' has the diff-max property,
(ii) ' is locally polyhedral convex,
(iii) for everyx 2 dom', there is a neighborhoodV ofx such that'V = '+�V

is polyhedral convex.
Moreover, for such a function,dom' is locally polyhedral convex, ' is con-

tinuous relative to dom', and ' is subdifferentiable at each point of its effective
domain.

REMARK 1. If ' 2 �o(X) is finite on X then ' has the diff-max property if and
only if for every x 2 X there is a neighbourhood U such that @'(u) \ @'(x) 6= ;
for all u 2 U . This result has been earlier remarked in [8]. It can be proved by
using the compactness of @'(x) for all x 2 X ([1], [21]).

COROLLARY 2. Assuming h locally polyhedral convex, then

@h(x�) � @g(x�)

is a necessary and sufficient condition for x� to be a local minimum of g � h.
Proof. This just combines Theorems 1, 4 & 5.

REMARK 2. (i) The condition (1) constitutes a sufficient supplementary require-
ment for a critical point x� of g � h to be a local minimum one.

Its realization relies on the size and the width of @g(x�) and @h(x�) (int(@g(x�))
is nonempty for example) as well as on certain continuity of the (multivalued)
mappings @g and @h ([1], [7], [8], [21]).

(ii) For a detailed study of local optimality in d.c. optimization, see [1], [7], [8],
[21]. However, to our knowledge, Theorem 4 is one of the most general results
relative to local minimum of d.c. functions.

2.3. ALGORITHMS FOR D.C. OPTIMIZATION (DCA)

The complete form of DCA is based upon Theorem 3. It allows approximating a
point (x�; y�) 2 Pl �Dl. From a point xo given in advance, the algorithm consist
of constructing two sequences fxkg and fykg defined by

yk 2 S(xk); xk+1 2 T (yk): (2)
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From a practical point of view, although this algorithm uses a d.c. decomposition
mentioned above, Problems (S(xk)) and (T (xk)) remain d.c. optimization pro-
grams. Calculation of yk and xk+1 therefore is still a difficult task. In practice the
following simplified form of DCA is used:

The Simplified Form of DCA:

The philosophy of simplified DCA is quite simple: it consists in the construction
of two sequences fxkg and fykg (candidates to primal and dual solutions) which
are easy to calculate and satisfy the following conditions:

(i) The sequences (g � h)(xk) and (h� � g�)(yk) are decreasing.
(ii) Every limit point x� (resp. y�) of the sequence fxkg (resp. fykg) is a critical

point of g � h (resp. h� � g�).
Results concerning local and global optimality in d.c. optimization presented in

the preceding subsections led us to the following description of simplified DCA.
Namely, for xo 2 X we define the two sequence fxkg and fykg by taking

yk 2 @h(xk); xk+1 2 @g�(yk): (3)

Interpretation of the simplified DCA:
The construction of the sequences fxkg and fykg can be interpreted as follows:
According to [28], xk+1 2 @g�(yk) if and only if yk 2 @g(xk+1), i.e., g(xk+1)�

hxk+1; yki � g(x) � hx; yki;8x 2 X . In other words, xk+1 is a solution of the
problem given as

minfg(x) � hx; yki : x 2 Xg: (4)

This is equivalent to

minfg(x) � [h(xk) + hx� xk; yki] : x 2 Xg (Pk)

for each k fixed. But yk 2 @h(xk), i.e.,h(x) � hk(x) = h(xk)�hx�xk; yki;8x 2
X . So (Pk) is a convex optimization problem obtained from (P) by replacing h by
its affine minorization function hk(x). Similarly, yk 2 @h(xk) means that yk is a
solution of the convex program (Dk)

minfh�(y)� [g�(yk�1) + hxk; y � yk�1i] : y 2 Y g (Dk)

which is obtained from (D) by using the affine minorization function of g� defined
by xk 2 @g�(yk�1). Here we can see a complete symmetry between Problems (Pk)
and (Dk) as well as the sequences fxkg and fykg relative to the duality of d.c.
optimization.

It is clear that if h and g� are essentially differentiable then the complete form
and the simplified form of DCA are identical.

In general when Problem (P ) is well defined (i.e. � is finite and the solution
set of (P ) is nonempty) we can construct such sequences fxkg and fykg. More
precisely we have the following result:
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LEMMA 1. ([1], [2]) Sequences fxkg, fykg in DCA are well defined if and only
if

dom@g � dom @h; dom @h� � dom@g�:

Convergence of Simplified DCA

For a convex function f we define �(f) := supf� � 0 : f � �
2k � k

2 is convexg.
Let �i and ��i , (i = 1; 2) be real nonnegative numbers such that 0 � �i < �(fi)
(resp. 0 � ��i < �(f�i )) where �i = 0 (resp. ��i = 0) if �(fi) = 0 (resp. �(f�i ) = 0)
and �i (resp. ��i ) may take the value �(fi) (resp. �(f�i )) if it is attained. We next set
f1 = g and f2 = h.

Also, let dxk := xk+1 � xk and dyk := yk+1 � yk. For a; b 2 X , the line
segment connecting them is denoted [a; b]. The following result is an improved
version of the Convergence Theorem 3 and 4 in [20].

THEOREM 6. ([1], [20], [21]) Suppose that the sequences fxkg and fykg are
defined by the simplified DCA. Then we have

(i) (g � h)(xk+1) � (h� � g�)(yk)�max
�
�2

2
kdxkk2;

��2
2
kdykk2

�

� (g � h)(xk)�max
�
�1 + �2

2
kdxkk;

��1
2
kdyk�1k2

+
�2

2
kdxkk2;

��1
2
kdyk�1k2 +

��2
2
kdykk2

�
:

The equality (g � h)(xk+1) = (g � h)(xk) holds if and only if

xk 2 @g�(yk); yk 2 @h(xk+1)and(�1 + �2)dx
k = ��1dy

k�1 = ��2dy
k = 0:

In this case
� (g�h)(xk+1) = (h��g�)(yk) and xk, xk+1 are critical points of g�h satisfying

yk 2 (@g(xk) \ @h(xk)) and yk 2 (@g(xk+1) \ @h(xk+1));

� yk is a critical point of h� � g� such that

[xk; xk+1] � ((@g�(yk) \ @h�(yk));

� xk+1 = xk if �(g) + �(h) > 0; yk = yk�1 if �(g�) > 0 and yk = yk+1 if
�(h�) > 0.

(ii) Similarly, for duality we have

(h� � g�)(yk+1) � (g � h)(xk+1)�max
�
�1

2
kdxk+1k2;

��1
2
kdykk2

�
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� (h� � g�)(yk)�max
�
�1

2
kdxk+1k2 +

�2

2
kdxkk2;

��1
2
kdykk2 +

�2

2
kdxkk2;

��1 + ��2
2

kdykk2
�
:

The equality (h� � g�)(yk+1) = (h� � g�)(yk) holds if and only if

xk+12@g�(yk+1); yk 2 @h(xk+1)

and

(��1 + ��2)dy
k = �2dx

k = �1dx
k+1 = 0:

In this case
� (h� � g�)(yk+1) = (g � h)(xk+1) and yk, yk+1 are critical points of h� � g�

satisfying

xk+1 2 (@g�(yk) \ @h�(yk)) and xk+1 2 (@g�(yk+1) \ @h�(yk+1));

� xk+1 is a critical point of g � h such that

[yk; yk+1] � ((@g(xk+1) \ @h(xk+1));

� yk+1 = yk if �(g�) + �(h�) > 0; xk+1 = xk if �(h) > 0 and xk+1 = xk+2 if
�(g) > 0.

(iii) If � is finite then the decreasing sequences f(g�h)(xk)g and f(h��g�)(yk)g
converge to the same limit � � �, i.e.,

lim
k!+1

(g � h)(xk) = lim
k!+1

(h� � g�)(yk) = �:

If �(g) + �(h) > 0 then limk!+1fx
k+1 � xkg = 0.

If �(g�) + �(h�) > 0 then limk!+1fy
k+1 � ykg = 0.

Moreover

lim
k!+1

fg(xk) + g�(yk)� hxk; ykig

= lim
k!+1

fh(xk+1) + h�(yk)� hxk+1; ykig = 0:

(iv) If � is finite and the sequences fxkg and fykg are bounded, then for every
limit x� of fxkg (respectively y� of fykg) there exists a cluster point y� of fykg
(respectively x� of fxkg) such that
� (x�; y�) 2 [@g�(y�) \ @h�(y�)]� [@g(x�) \ @h(x�)] and (g � h)(x�) = (h� �
g�)(y�) = �,
� limk!+1fg(x

k) + g�(yk)g = limk!+1hx
k; yki.

Proof. The proof can be done by the same way as in the proofs of Theorems 3
and 4 in Pham Dinh Tao [20] (see [1], [21]). E
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REMARK 3. (i) In practice the simplified DCA usually yields a local minimizer
which is also global ([1], [2], [21], [23]–[24]). Theorem 6 shows how strong con-
vexity of d.c. components in primal and dual problems can influence DCA. To make
the d.c. components (of the primal objective function f = g � h) strongly con-
vex we usually apply the following process (the so-called proximal regularization
technique)

f = g � h =

�
g +

�

2
k � k2

�
�

�
h+

�

2
k � k2

�
:

In this case the d.c. components in the dual problem will be differentiable. Similarly
inf-convolution of g and h with �

2 k � k
2 will make the d.c. components (in dual

problem) strongly convex and the d.c. components of the primal objective function
differentiable. For a detailed study of regularization techniques in d.c. optimization,
see [1], [20], [21].
(ii) The main difference between the simplified and the complete DCA lies in the
choice of yk in @h(xk) andxk+1 in @g�(yk). The convergence result of the complete
DCA is thus improved: in Theorem 6, the nonemptiness of the subdifferentials
intersection is replaced by a subdifferential inclusion ([1], [20], [21]). In other
words the complete DCA yields a pair of elements (x�; y�) 2 Pl � Dl (see
Subsection 2.2). So the complete DCA converges to a local solution in polyhedral
d.c. optimization problem (see Subsection 2.4).

2.4. POLYHEDRAL D.C. OPTIMIZATION PROBLEMS AND FINITE CONVERGENCE OF
DCA WITH FIXED CHOICES OF SUBGRADIENTS

2.4.1. Polyhedral d.c. optimization problems

We suppose that in Problem (P ) either g or h is polyhedral convex. We may assume
that h is a polyhedral convex function given by

h(x) = maxfhai; xi � �i : i = 1; . . . ;mg+ �C(x)

where �C is the indicator function of a nonempty polyhedral convex set C in X .
If in (P ) g is polyhedral and h is not so, then we consider the dual problem (D),
since g� is then polyhedral.

Throughout this section we assume that the optimal value � of problem (P )
is finite which implies that dom g � domh = C . Thus (P ) is equivalent to the
problem

( ~P ) � = inffg(x) � ~h(x) : x 2 Xg

where ~h(x) = maxfhai; xi � �i : i 2 Ig, with I = f1; . . . ;mg. By this way we
can avoid +1� (+1) in (P ). Clearly

� = inf
i2I

inf
x2X

fg(x) � (hai; xi � �i)g: (5)
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For each i 2 I , let

(Pi) �i = inffg(x) � (hai; xi � �i) : x 2 Xg:

The solution set of this problem is @g�(ai). Also, let

J(�) = fi 2 I : �i = �g and I(x) = fi 2 I : hai; xi � �i = ~h(x)g:

THEOREM 7. (i) x� 2 P if and only if I(x�) � J(�) and x� 2 \f@g�(ai) : i 2
I(x�)g.
(ii) P = [f@g�(ai) : i 2 J(�)g. If fai : i 2 Ig � dom@g� then P 6= ;.

Proof. (i) Let x� 2 P and i 2 I(x�). Then

� = g(x�)� ~h(x�) = g(x�)� (hai; xi � �i)

which means that i 2 J(�) and x� 2 \f@g�(ai). Thus

I(x�) � J(�) and x� 2 \f@g�(ai) : i 2 I(x�)g:

Conversely, if i 2 J(�) and x� 2 @g�(ai) then

� = g(x�)� (hai; xi � �i) � g(x�)� ~h(x�)

which implies � = g(x�)� ~h(x�) and i 2 I(x�).
(ii) is immediate from (i). �

LEMMA 2. (i) ~h�(ai) � �i;8i 2 I . Equality holds if and only if there exists
x 2 X such that i 2 I(x).

(ii) ~h(x) = maxfhx; yi�~h�(y) : y 2 cofai : i 2 Igg = maxfhai; xi�~h�(ai) :
i 2 Ig.

Proof. (i) From the definition of ~h we have

�i � hai; xi � h(x); 8x 2 X;8i 2 I:

Hence ~h�(ai) � �i. If there exists x 2 X such that i 2 I(x), then

�i = hai; xi � ~h(x) � ~h�(ai)

which together with (i) implies ~h�(ai) = �i.
Conversely, suppose that ~h�(ai) = �i for some i 2 I . Since (see [28])

dom@~h� = dom ~h�, there exists x 2 X such that ~h(x) = hai; xi � �i. Hence
i 2 I(x).
(ii) By the fact dom ~h� = cofai : i 2 Ig (see [28]) we have

~h(x) = maxfhx; yi � ~h�(y) : y 2 cofai : i 2 Igg:

On the other hand, from (i)

~h(x) = maxfhai; xi � ~h�(ai) : i 2 Ig: �
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By Lemma 2 we can write ( ~P ) as

� = inff inf
x2X

fg(x) � hx; yi+ ~h�(y)g : y 2 fai : i 2 Igg (6)

� = inff inf
x2X

fg(x) � hx; yi+ ~h�(y)g : y 2 cofai : i 2 Igg: (7)

Problem (7) is exactly the dual problem ( ~D) of ( ~P )

( ~D) � = inff~h�(y)� g�(y) : y 2 cofai : i 2 Igg;

while Problem (6) becomes

� = inff~h�(y)� g�(y) : y 2 fai : i 2 Igg:

Note that, in general, for a convex set M � X and g; h 2 �o(X),

inffg(x) � h(x) : x 2 co(M)g < inffg(x) � h(x) : x 2Mg:

The following result concerning the solution set ~D of the dual problem ( ~D) can be
proven directly without using Theorem 1.

LEMMA 3. J(�) = fi 2 I : ai 2 ~D and ~h�(ai) = �ig;
~D � fai : i 2 J(�)g.

Proof. Let i 2 J(�) then

� = �i = inffg(x) � (hai; xi � �i) : x 2 Xg

= �i � supfhai; xi � g(x) : x 2 Xg

= �i � g�(ai) � ~h�(ai)� g�(ai)

which implies ~h�(ai) = �i and ai 2 ~D. Conversely, let i 2 I such that ai 2 ~D and
~h�(ai) = �i. Then

� = ~h�(ai)� g�(ai) = �i � g�(ai):

Thus

�i = inffg(x)� (hai; xi � �i) : x 2 Xg = �i � g�(ai) = �:

Hence i 2 J(�). The inclusion fai : i 2 J(�)g � ~D is evident. �

REMARK 4. � Let I 0 = fi 2 I : 9x 2 X; hai; xi � �i = ~h(x)g. Clearly, the
definition of ~h involves the affine functions hai; xi � �i with i 2 I 0, i.e.,

~h(x) = maxfhai; xi � �i : i 2 I 0g:

In this case by Lemma 2, ~h(ai) = �i;8i 2 I 0.
� From Theorem 1 applying to the dual problem we have
(i) P = [f@g�(x�) : x� 2 ~Dg; since dom @~h = X .
(ii) ~D � [fcofai : i 2 I(x�)g : x� 2 Pg.

This result is stronger than that of Lemma 3.
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2.4.2. Finite convergence of DCA

From 2.4.1 we see that (globally) solving the polyhedral d.c. optimization problem
( ~P ) amounts to solving m convex programs (Pi)(i 2 I). For generating P one
can first determine J(�) and then apply Theorem 7. In practice this can be done
effectively ifm is relatively small. In the case wherem is large we use the simplified
DCA for solving (locally) Problem ( ~P ). Recall that (Lemma 1) the simplified DCA
is well defined if and only if cofai : i 2 Ig � dom @g�. Thanks to the finiteness
of � one has dom g � domh = C and cofai : i 2 Ig � dom g�. The simplified
DCA in this case is described simply as follows:

Let xo be chosen in advance. Set

yk 2 @~h(xk) = cofai : i 2 I(xk)g;xk+1 2 @g�(yk):

By setting yk = ai; i 2 I(xk) the calculation of xk+1 is reduced to solve the
convex program

( ~Pi) minfg(x) � hyk; xi : x 2 Xg:

Note that if yk = ai with i 2 J(�) then, by Theorem 7, xk+1 2 P .
Now let ~H and G� be two mappings respectively defined in dom @~h = X and

in dom@g� such that

~H(x) 2 @~h(x); 8x 2 X and G�(y) 2 @g�(y) 8y 2 dom@g�:

Then the simplified DCA with fixed choice of subgradients is defined as [21]

yk = ~H(xk);xk+1 = G�(yk):

It is clear that for a polyhedral d.c. optimization problem range ~H is finite if h
is polyhedral convex, and range G� is finite if g is polyhedral convex. In each of
these cases the sequences fxkg and fykg are discrete (i.e., they have only finitely
many different elements).

THEOREM 8. (i) The discrete sequences f(g � ~h)(xk)g and f(~h� � g�)(yk)g are
decreasing and convergent.
(ii) The discrete sequences fxkg and fykg are of the same nature: either they
are convergent or cyclic with the same period p. In the latter case the sequences
fxkg and fykg contain exactly p limit points that are all critical points of g � h.
Moreover if �(g) + �(g�) > 0 then these sequences are convergent.

Proof. Immediate from Theorem 6 and the discrete character of the above
sequences. E

2.4.3. Natural choice of subgradients in DCA

Let f 2 �o(X) and T be a selection of @f , i.e., Tx 2 @f(x);8x 2 dom @f . T is
said to be a natural choice of subgradients of f if
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� Tx 2 ri@f(x)
� @f(x) = @f(x0)) Tx = Tx0.
The following results are useful, in the sequel, to the proof of the finite convergence
of DCA (applying to the polyhedral d.c. optimization) with the fixed choices of
subgradients for h and g�, and the natural choice for at least one polyhedral function
among them. The natural choice has been successfully used in the subgradient-
methods for computing bound norms of matrices ([14]-[17]) and the study of
iterative behaviour of cellular automatas ([19]).

LEMMA 4. Let f 2 �o(X), then for xo; x1 2 X one has
(i) f�(

Pk
i=1 �

iyi) =
Pk

i=1 �
if�(yi), whenever y1; . . . ; yk 2 @f(xo), and �i � 0

such that
Pk

i=1 �
i = 1.

(ii) ri[@f(xo)] \ @f(x1) 6= ; ) @f(x0) � @f(x1).
Proof. (i) Let y =

Pk
i=1 �

iyi with yi 2 @f(x0); �i � 0;8i = 1; . . . ; k andPk
i=1 �

i = 1. Then y 2 @f(x0), i.e., f(x0) + f�(y) = hx0; yi. On the other hand

f(x0) + f�(yi) = hx0; yii;8i = 1; . . . ; k:

Thus

f(x0) +
kX
i=1

�if�(yi) = hx0; yi:

Hence (i).
(ii) We suppose that ri[@f(x0)] \ @f(x1) 6= ;. Let y0 be an element of this
intersection. Since y0 2 ri@f(x0), for every y 2 @f(x0) there exists y0 2 @f(x0)
such that y0 = �y + (1� �)y0; 0 < � < 1. Thus by virtue of (i)

f�(y0) = ��f�(y) + (1� �)f�(y):

On the other hand, y0 2 @f(x1) implies f(x1) + f�(y0) = hx1; y0i, from which
follows

f(x1) + �f�(y) + (1� �)f�(y0) = �hx1; yi+ (1� �)hx1; y0i:

This means that

�[f(x1) + f�(y)] + (1� �)[f(x1) + f�(y0)] = �hx1; yi+ (1� �)hx1; y0i:

Note that by the definition of f� we always have f(x1) + f�(y) � hx1; yi and
f(x1) + f�(y0) � hx1; y0i. Thus

f(x1) + f�(y) = hx1; yi and f(x1) + f�(y0) = hx1; y0i

which implies that both y and y0 are elements of @f(x1). �

Recall ~h(x) = maxfhai; xi � �i : i 2 Ig. Thus one can take ~H by setting

~H(x) =
X

i2I(x)

�iai
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where �i; i 2 I(x) satisfying
(i) �i > 0;8i 2 I(x) and

P
i2I(x) �

i = 1,
(ii) �i depends only on I(x).

LEMMA 5. (i) @~h(x) = @~h(x0), I(x) = I(x0):
(ii) ~H is a natural choice of subgradients of ~h if and only if it is defined as above.

Proof. Since ri(@~h(x)) = f
P

i2I(x) �
iai : �i > 08i 2 I(x)g ([3]), it is

sufficient to show that @~h(x) = @~h(x0) implies I(x) = I(x0). To do this, by
the symmetry, we need to show only that if k 2 I(x) then k 2 I(x0). Note that
k 2 I(x) implies ak 2 @~h(x0). i.e.,

hak; x0i = ~h(x0) + ~h�(ak):

In view of Lemma 2, ~h�(ak) = ak. Thus

hak; x0i � ak = ~h(x0): �

Consider now DCA with fixed choice of subgradient applying to the polyhedral
d.c. optimization presented in 2.4.1. If ~H is a natural choice of ~h, then the following
result strengthens that of Theorem 8.

THEOREM 9. The simplified DCA with fixed choice of subgradients is finite.
Proof. Take p = minfr : 9k � 0, xk+r = xkg (p is the period of fxkg) and

q = minfr : xp+r = xrg. Then xp+q = xq. In virtue of Theorem 6 we have

(g � h)(xq) = (g � h)(xp+q) � (g � h)(xp+q�1) � � � � � (g � h)(xq)

which implies

yq+i 2 @~h(xq+i+1) for every i = 1; . . . ; p� 1:

By Lemma 4 one can write

@~h(xq+i) � @~h(xq+i+1) for every i = 1; . . . ; p� 1:

i.e.,

@~h(xq+i) = @~h(xq+i+1) for every i = 1; . . . ; p� 1:

Thus yk = yq and xk = xq+1;8k � q. �

We consider now the problem of maximizing a convex function' on a polytope
C , i.e., g = �C and h = ' in (P ):

(PM) minf�C(x)� '(x) : x 2 Xg:

Clearly (PM) is a polyhedral d.c. problem. Let fxkg and fykg be generated by the
simplified DCA (with fixed choice of subgradients) such that xk is a vertex of C ,
then according to Theorems 8 and 9 we obtain after a finite number of iterations
(x�; y�) such that:
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(i) x� is a vertex of C such that r'(x�) 2 @�C(x
�),

(ii) r'�(y�) 2 @��C(y
�) = r'(x�).

From Theorem 2 (property (iv)) y� is a local minimum of'����C (i.e., @��C(y
�) =

r'�(y�) by Corollary 2) then the vertex x� is a local minimum of �C � ' (i.e., a
local maximum of ' on C). But we have from (ii)

x� = r'�(y�) 2 @��C(y
�); i:e:; y� 2 @�C(x

�):

So we can state the following result

PROPOSITION 1. Letx� be a vertex ofC computed by DCA as above. Ifr'(x�) 2
int(@�C(x�)) then x� is a local maximum of ' on C .

Proof. It is immediate from the above reasoning since ��C is then differentiable
at y�. �

Since the sufficient condition in Proposition 1 is almost always satisfied, one can
say that in general the simplified DCA (with fixed choice of subgradients and with
fxkg contained in the vertex set of C) converges after a finite number of iterations
to a local solution of (PM). Similarly it is worth noting that complete DCA (with
fixed choice of subgradients) applying to (PM) (always) converges after a finite
number of iterations to a local solution of (PM) ([1], [21]).

3. Solving Problems (IQP1) and (IQP2) by DCA

In this section we use the simplified DCA presented in Subsection 2.3 for solving
Problems (IQP1) and (IQP2). Denote by g andh the d.c. components of the objective
function of the problem being considered. As indicated before, we try to choose
g and h such that the sequences fxkg and fykg in (3) are easy to calculate, i.e.,
either fykg is explicitly defined and the solution of (Pk) is inexpensive or fxkg is
explicitly defined and the solution of (Dk) is inexpensive.

3.1. PROBLEM (IQP2)

One can write (IQP2) in the form

min
�

1
2
hw; Cwi + ht; wi �

1
2
hw;Dwi :

w 2 
 = fw 2 R
n+s : Aw � �a;w � 0g

�
(8)

where C and D are (n+ s)� (n+ s) matrices

C =

� ~C 0
0 0

�
; D =

�
0 0
0 �D

�
; w =

�
x

y

�
; t =

�
c

d

�

jogo314.tex; 7/08/1997; 12:43; v.7; p.17



270 LE THI HOAI AN AND PHAM DINH TAO

and

A =

0
@ ~A B

A1 0
0 A2

1
A ; �a =

0
@ a

a1

a2

1
A :

Clearly C andD are positive semi-definite matrices. Then (8) is a d.c. optimization
problem of the form (P ) with the following “natural” d.c. decomposition:

g(w) :=
1
2
hw; Cwi + ht; wi + �
(w); h(w) :=

1
2
hw;Dwi (9)

where �
, as before, stands for the indicator function of 
.
First, we observe that h is differentiable and rh(w) = Dw;8w 2 R

n+s . Then,
to apply the simplified DCA, we have to solve, at each iteration k, a problem of
the form (4) given by

minfg(w) � hw;Dwki : w 2 R
n+sg

for computing wk+1.
Our algorithm can be formulated as follows:

ALGORITHM 1. Letwo 2 R
n+s be given. At each iteration k � 0 computewk+1

by solving the convex quadratic program

(Qk
1) min

�
1
2
h; w; Cwi + ht�Dwk; wi : w 2 


�
:

The stopping criterion is kwk+1 � wkk � ".

REMARK 5. (i) The main subroutine in this algorithm is for solving Problem
(Qk

1) in the (x; y)-space. The dimensions of the variable x and y do not affect the
complexity for DCA.
(ii) From Theorem 6 we see that if either g or h is strongly convex then the sequence
f(g�h)(wk)g is strictly decreasing and limk!+1 kwk+1�wkk = 0. Thus if both
~C and (�D) are only positive semi-definite then we use the proximal regularization
technique (see Remark 3) for finding a “good” d.c. decomposition. More precisely,
in this case we take

g(w) :=
1
2
hw; (�I + C)wi + ht; wi+ �
(w);

h(w) :=
1
2
hw; (�I +D)wi (10)

with any positive number �. The simplified DCA applied to (8) with the decompo-
sition (10) gives exactly Algorithm 1 where C and D are replaced by �I + C and
�I + D respectively. In practice the choice of � may have an important influence
on the qualities of this algorithm. Numerical experiments show that the algorithm
is efficient if � is small enough (� = 0:0001).
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In the case where ~C � 0 (8) is d.c. polyhedral optimization problem. If in addition
D is positive definite (i.e., D is negative definite) we have

PROPOSITION 2. Algorithm 1 with fixed choice of subgradients converges almost
always to a local minimum of (8) after a finite number of iterations.

Proof. Immediate from Proposition 1 and from the fact: a positive definite
quadratic form and its conjugate are differentiable. �

3.2. PROBLEM (IQP1)

We will present here some d.c. decompositions of the objective function in (IQP1)
for which the function h is always differentiable and the gradient of h is given
explicitly. Then, as in the solution of (IQP2), the use of the simplified DCA amounts
to solving, at each iteration k, a problem of the form (4). Besides the spectral
decomposition of H presented hereafter, the following direct d.c. decomposition
seems to be suitable:

g(x) :=
1
2
h(H + �I)x; xi+ hl; xi + �K(x); h(x) :=

�

2
kxk2 (11)

where � is a positive number such that (H + �I) is positive semi-definite. Since
rh(x) = �x, we have:

ALGORITHM 2. Let xo 2 R
q be given and let � be a positive number such that

(H + �I) is positive semi-definite. At each iteration k � 0 compute xk+1 by
solving the convex quadratic program

min
�

1
2
h(H + �I)x; xi+ hl � �xk; xi : x 2 K

�
:

The stopping criterion is kxk+1 � xkk � ".

Nevertheless the “good” d.c. decomposition (9) suggests us to decompose the
objective function of (IQP1) in the form (9). For this some processes have been
studied in [1]. Among them it is worth to note the following d.c. decomposition:
H =W + V where

Wij = Hij 8i; j 2 N and i 6= j (12)

Wii =

8>>><
>>>:

P
i6=j Hij + �1 if i 2 I� and

P
i6=j Hij > 0

�
P

i6=j Hij + �2 if i 2 I� and
P

i6=j Hij � 0
Hii + �3 if i 2 I+ and (

P
j 6=i Hij)�Hii � 0P

j 6=i Hij + �4 if i 2 I+ and (
P

j 6=i Hij)�Hii > 0

(13)

and

Vij = 0 8i; j 2 N and i 6= j (14)
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Vii =

8>>><
>>>:
Hii �

P
i6=j Hij � �1 if i 2 I� and

P
i6=j Hij > 0

Hii +
P

i6=j Hij � �2 if i 2 I� and
P

i6=j Hij � 0
��3 if i 2 I+ and (

P
j 6=i Hij)�Hii � 0

Hii �
P

j 6=i Hij � �4 if i 2 I+ and (
P

j 6=i Hij)�Hii > 0

(15)

with �i � 0; i = 1; . . . ; 4 such that W is positive semi-definite. For instance a
possible choice of the �i is that makingU diagonally dominant ([32]). We can now
write (IQP1) in the form (IQP3):

min
�

1
2
hWx; xi+ hl; xi+

1
2
hV x; xi : x 2 K

�
(16)

and then use the decomposition (9) for solving (16). More precisely, taking

g(x) :=
1
2
hWx; xi+ hl; xi+ �K(x); h(x) :=

1
2
h�V x; xi (17)

DCA gives rise to Algorithm 3 which consists of solving

min
�

1
2
hWx; xi+ hl + V xk; xi : x 2 K

�

at each iteration k for computing xk+1.
In practice it seems that the smaller are the �i the more efficient are DCA for

solving (IQP1).
Finally let us present now the d.c. decomposition based on the spectral decompo-

sition ofH . Let �1 � �2 � � � � � �q be the eigenvalues ofH whose corresponding
eigenvectors fu1; . . . ; uqg constitute an orthogonal basis of Rq . We have

H + P�P T (18)

where the diagonal matrix � is diag(�1; . . . ; �q) and P the orthogonal matrix
whose columns are fu1; . . . ; uqg.

The first d.c. decomposition of the objective function in (IQP1) is obtained by
writing

H = P�1P
T + P�2P

T = H1 +H2

where �1 (resp. �2) is the diagonal positive semi-definite part (resp. the diagonal
negative semi-definite part) of �, i.e.

(�1)ii = �i if �i � 0; 0 otherwise for i = 1; . . . ; q

(�2)ii = �i if �i < 0; 0 otherwise for i = 1; . . . ; q

DCA applied to the following d.c. decomposition

g(x) :=
1
2
hH1x; xi+ hl; xi + �K(x); h(x) :=

1
2
h�H2x; xi (19)
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is called Algorithm 4.
In parallel by using the change of variables y = P Tx, we can transform (IQP1)

into the form (IQP3).

4. A Decomposition Method for Globally Solving (IQP1) and (IQP2)

We shall present in the Appendix the decomposition branch and bound method
developed in Phong-An-Tao [29] (denoted ALGG) to solve Problem (IQP3). There
the separability of the concave part is crucial. In this section we show how to use
ALGG for solving (IQP1) and (IQP2).

4.1. PROBLEM (IQP1)

By the d.c. decompositions (11), (17) in Subsection 3.2 one can transform Problem
(IQP1) into the form (IQP3). Observing that the decomposition (11) can be also
formulated as (17) where W = H + �I and Vii = �� for all i, in the sequel we
shall consider only the decomposition (17). We have

(IQP1), min

(
1
2
hWx; xi+ hl; xi �

1
2

qX
i=1

vix
2
i : x 2 K

)
(20)

where vi = �Vii; i = 1; . . . ; q. Then ALGG can be applied to solve (IQP1) when
q is not large. The rectangle R0 (cf. Appendix) is now defined as

R0 = fx : 0 � xi � L0
ig; i = 1; . . . ; q

where L0
i are the optimal values of q linear programs

maxfxi : x 2 Kg; i = 1; . . . ; q:

The convex program (RCP) in ALGG (cf. Appendix)

(RCP) min
�

1
2
h ~Cx; xi+ hc; xi+ �R(y) : (x; y) 2 
; y 2 R

�

is now replaced by

(RCP1) min
�

1
2
hWx; xi+ hl; xi+ �1

R(x) : x 2 K \R

�

where

�1
R(x) =

qX
i=1

�1
Ri(xi);�

1
Ri(xi) = �

1
2
vi(li + Li)xi +

1
2
viliLi:

According to these modifications, we obtain the modified version ALGG:
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ALGORITHM ALGG 1. Initialization: Solve q linear programs:

maxfxi : x 2 Kg; i = 1; . . . ; q

to get optimal values L0
i , i = 1; . . . ; q and set R0 = fx : 0 � xi � L0

ig,
i = 1; . . . ; q. Compute �1

R0
and solve the convex program

(R0CP1) min
�

1
2
hWx; xi+ hl; xi+ �1

R(x) : x 2 K \R0

�

to obtain an optimal solutionxR0 and the optimal value �(R0). SetR = fR0g; �0 =
�(R0); �0 = f(xR0) and x0 = xR0 .
Iteration k = 0; 1; 2; . . . ;:
k.1. Delete allR 2 Rk with �(R) � �k. LetPk be the set of remaining rectangles.

If Pk = ; stop: xk is a global optimal solution.

k.2. Otherwise, select Rk 2 Pk such that

�k := �(Rk) = minf�(R) : R 2 Pkg

and subdivide Rk into Rk1; Rk2 according to the normal rectangular subdivi-
sion process “w-subdivision” (cf. Appendix).

k.3. For each Rk1; Rk2 compute �1
Rki

and solve

(RkiCP1) min
�

1
2
hWx; xi+ hl; xi+ �1

R(x) : x 2 K \R

�

to obtain xRki and �(Rki).

k.4. Set xk+1 to the best of the feasible solutions known so far and update �k+1.

k.5. Set Rk+1 := (PknRk) [ fRk1; Rk2g and go to the next iteration.

REMARK 6. From the numerical point of view, we see that the speed of the
convergence of ALGG1 with the decomposition (11) very much depends on the
value �. Numerical experiments show that the nearer � > 0 is to

�� = inff� > 0 : �I +H is positive definiteg

the more efficient is the algorithm. This suggests us to calculate the smallest
eigenvalue �1(H) of matrix H for finding �.

4.2. PROBLEM (IQP2)

Using the decomposition (11) for the objective function of Problem (IQP2) we
have

(IQP2) , min
�
F (x; y) =

1
2
h ~Cx; xi+ hc; xi +

1
2
h(D + �I)y; yi+ hd; yi

�
1
2
�

sX
i=1

y2
i : (x; y) 2 


�
(21)
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where � is a positive number such that (D + �I) is positive semi-definite. So
F (x; y) is decomposed in a sum of a convex part

F1(x; y) =
1
2
h ~Cx; xi+ hc; xi +

1
2
h(D + �I)y; yi

and a concave part

F2(y) = hd; yi �
1
2
�

sX
i=1

y2
i

which is separable.
This interesting decomposition allow us to use ALGG for solving (IQP2). By

(21), the only difference between Problems (IQP3) and (IQP2) lies on the fact in
(IQP2) the convex termF1(x; y) of the objective function is defined in (x; y)-space.
Then the convex program (RCP) in ALGG is replaced by

(RCP2) minfF1(x; y) + ��R(y) : (x; y) 2 
; y 2 Rg:

Also, the convex envelope over a rectangle R of the concave function F2 is now
defined as

��R(y) =
sX

i=1

�Ri(yi) =
sX

i=1

��
di �

1
2
�(li + Li)

�
yi +

1
2
�liLi

�
:

Hence, we have

ALGORITHM ALGG 2. Initialization: Compute the smallest eigenvalue�1(D)
of matrix D. Set � = ��1(D) + 0:01. Solve s linear programs:

maxfyi : (x; y) 2 
g; i = 1; . . . ; s

to get optimal values L0
i , i = 1; . . . ; s and R0 = fy : 0 � yi � L0

ig. Compute ��R0

and solve the convex program

(R0CP2) minfF1(x; y) + ��R0(y) : (x; y) 2 
; y 2 R0g

to obtain an optimal solution (xR0 ; wR0) and the optimal value �(R0). Set R =
fR0g; �0 = �(R0), �0 = f(xR0 ; wR0) and (x0; y0) = (xR0 ; wR0).
Iteration k = 0; 1; 2; . . .:
k.1. Delete allR 2 Rk with �(R) � �k. LetPk be the set of remaining rectangles.

If Pk = ; stop: (xk; yk) is a global optimal solution.

k.2. Otherwise, select Rk 2 Pk such that

�k := �(Rk) = minf�(R) : R 2 Pkg

and subdivide Rk into Rk1; Rk2 according to the normal rectangular subdivi-
sion process “w-subdivision” (cf. Appendix).
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k.3. For each Rk1; Rk2 compute �1
Rki

and solve

(RkiCP2) minfF1(x; y) + ��Rki(y) : (x; y) 2 
; y 2 Rkig

to obtain (xRki ; wRki) and �(Rki).

k.4. Set (xk+1; yk+1) to the best of the feasible solutions known so far and update
�k+1.

k.5. Set Rk+1 := (PknRk) [ fRk1; Rk2g and go to the next iteration.

Clearly both (RCP) and (RCP2) are considered in the same (x; y)-space. On
the other hand the calculation of �1(D) when s is moderate size is not expensive.
Thus Problem (IQP2) seems to be not more difficult to solve computationally than
Problem (IQP3).

5. Numerical Results

In this section we present some computational tests on the performance of our
algorithms for different sets of test problems. Our experiments are composed of
two parts. In the first we study the performance of DCA and the global algorithms
for problems (IQP1), (IQP2) and (IQP3). In the second we provide a comparison
between DCA (with two different decompositions) and an active set method (in
the local approach) for the general problem (IQP1).

The stopping criterion of DCA was actually er � 10�7 where

er =

�
kxk+1 � xkk2=kxkk2 if kxkk > 1
kxk+1 � xkk2 otherwise

: (22)

5.1. THE PERFORMANCE OF DCA AND THE GLOBAL ALGORITHMS

In the first experiment the algorithms have been coded in PASCAL under a Unix
system and run on SUN SPARC-2 station with double precision. We solved 48
randomly selected problems and the problem taken from Floudas and Pardalos [6]
(Problem 1, Table 1). We used the Lemke algorithm for minimizing the convex
quadratic problems over a polytope. The elements of matrices A, B and vectors a,
c, d are generated with their signs, so that the feasible region was nonempty and
bounded. (For simplicity we take A1 � A2 � 0, i.e., the feasible region is �
).
A positive definite matrix ~C is constructed following Moré and Sorensen ([12]).
More precisely we set ~C = Q ~DQT for some orthogonal matrix Q and a diagonal
matrix ~D. The orthogonal matrix Q of the form Q1(P2)Q3 where

Qj = I � 2
wjw

T
j

kwjk2 ; j = 1; 2; 3

and the components wj are random numbers in (-1,1). The matrix (�D) is con-
structed by the same procedure. For an indefinite matrixH = Q ~DQT (in Problems
40–49), the diagonal elements of matrix ~D are random numbers in (–10, 10).
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Table 1. The performance of Algorithm 1 and ALGG for solving (IQP3)

Pb n s m Algorithm 1 ALGG

iter time value iter time value

1 10 10 10 3 0.10 �49318.01796 5 1.20 �49318.01796
2 10 10 10 2 0.08 �474.9335 6 1.42 �474.9335
3 50 10 10 3 1.27 �8477.3949 5 5.25 �8477.3949
4 50 10 10 4 2.43 �18410.6544 4 7.77 �18410.6544
S 50 10 10 3 1.82 �1870719.9497 2 3.13 �1870719.9497
6 50 10 10 14 6.57 �1411.2272 71 107.00 �1411.2272
7 50 10 20 12 16.50 �709.4954 64 236.20 �1053.2883
8 50 20 10 14 15.95 �19745.0002 28 53.60 �19745.0002
9 100 10 10 8 13.00 �17995.4845 9 29.95 �17995.4843

10 100 10 20 5 21.03 �338032.6704 6 47.82 �338032.6704
11 100 10 20 3 10.90 �37068.4762 10 104.47 �37068.4762
12 100 10 20 5 18.85 �12903.3843 5 37.07 �23172.4911
13 100 20 10 5 8.98 �48122.9213 50 235.90 �48122.9213
14 100 20 15 13 68.95 �13033.1788 65 494.48 �21909.2309
15 150 15 20 10 100.8- �165808.8504 22 445.62 �165808.8485
16 150 15 20 8 113.25 �100712.8212 36 853.00 �100712.8210
17 150 20 20 3 29.48 �461601.5248 25 568.00 �461601.5248
18 150 20 20 3 43.00 �559466.4654 6 207.32 �559446.4654
19 150 20 20 4 35.13 �822692.6431 6 121.93 �822692.6431
20 150 30 20 4 21.02 �625589.0117 7 162.85 �1031057.3468
21 150 30 20 4 39.92 �155964.5034 6 136.58 �155964.4849
22 150 30 20 3 19.47 �137832.6798 5 116.90 �146291.6683
23 200 20 20 12 276 �21845.4611 66 2840.65 �21845.4611
24 200 30 20 30 994.77 �137806.3506 118 7497.70 �137806.2335

In the globally algorithms, the deletion rule �(R) � �k was replaced by �(R) �
(�k � �j�kj) so that these algorithms terminate whenever an �-optimal solution �x
has been obtained. Table 1 provides the computational results of Algorithm 1 and
the global algorithm ALGG ([29]) for 24 tested problems in the form (IQP3) when
s � 30.

Table 2 indicates the performance of Algorithm 1 and ALGG2 when s � 30 for
15 problems in the form (IQP2).

Table 3 contains the computational results of Algorithm 2, Algorithm 3 and
ALGG1 when n � 30 for 10 problems in the form (IQP1).

The initial point of Algorithm 1 is chosen as

wo
i = 0; i = 1; . . . ; n; wo

i+n = 0:4Lo
i ; i = 1; . . . ; s: (23)

In Algorithms 2 and 3 we started at the same point xoi = 0:4Lo
i ; i = 1; . . . ; n.
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Table 2. The performance of Algorithm 1 and ALGG2 for solving (IQP2)

Pb n s m Algorithm 1 ALGG2

iter time value iter time value

25 50 10 10 2 0.85 �1965.9444 4 8.42 �3525.0121
26 100 10 20 3 28.80 �90.3198 2 30.22 �90.3198
27 100 10 20 9 41.92 �4183.5794 9 102.68 �4183.4422
28 100 10 20 7 41.02 �689.7835 11 129.80 �964.1756
29 150 20 20 4 18.80 �4200835.4290 12 248.47 �4200835.4290
30 150 20 20 4 47.02 �3049374.3695 8 201.28 �3049374.3695
31 150 20 20 2 9.07 �15764602.2436 6 136.42 �15764602.2437
32 150 30 20 3 20.87 �7190983.3576 103 2968.42 �7274068.8458
33 150 30 20 5 51.05 �2473171.0127 23 644.90 �2473177.1578
34 150 30 20 10 102.72 �36290.2666 19 515.55 �36290.2666
35 30 100 20 5 22.48 �125633.58021
36 200 100 20 5 114.10 �4071717.3418
37 100 150 20 30 314.35 �2175466.0546
38 150 50 20 15 200.53 �131666.07454
39 100 100 20 24 260.82 �230037.8888

For ALGG, ALGG1 and ALGG2 we took � = 10�3. In ALGG we used w-
subdivision which was shown to be the best among three types of normal rectangular
subdivision given in [29].

The abbreviations in these tables are the following ones: Pb – Problem; iter –
number of iteration, time – CPU time in seconds; value – value optimal computed
by algorithm.

5.2. COMPARISON BETWEEN DCA AND THE ACTIVE SET METHOD

In the second experiment we solved 20 problems which is the form (IQP1) by
Algorithms 2, 4 ad the active set method. The algorithms have been coded in
MATLAB and run on SUN SPARC-10 station with double precision. The data was
generated as in Subsection 5.1. For minimizing the convex quadratic problems over
a polytope in Algorithms 2 and 4 we also used the active set method. We employed
the function EIG in MATLAB for computing the eigenvalues and eigenvectors of
matrix H in Algorithm 4.

Comments
� From the results in the tables 1 and 2 we see that Algorithm 1 with the choice

of starting point (23) is very efficient: in most problems (19 over 24 for (IQP3) and
7 over 10 for (IQP2)) its computed solution is a global solution.
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Table 4. The performance of Algorithms 3, 4 and active set method for solving (IQP1)

Pb q m Algorithm 2 Algorithm 4 Active set method

iter value iter value value

50 10 5 10 �155.28 4 �44.35 �0.11
51 10 10 17 �218.04 8 �218.04 �0.02
52 15 10 11 �126.62 6 �126.63 0.89
53 20 20 21 �122.64 7 �122.66 �0.02
54 30 10 14 �549.52 4 �549.58 6.09
55 30 15 24 �363.63 9 �363.67 �6.98
56 30 20 18 �198.45 7 �167.11 4.96
57 40 10 14 �8794.4 7 �8794.4 �0.08
58 40 20 19 �862.97 7 �862.97 1.81
59 50 20 8 �3825.2 5 �3825.2 6.16
60 60 20 26 �2610.5 9 �2617.1 10.33
61 70 20 14 �8865.8 5 �8870.7 �6.05
62 100 20 15 �338930 6 �192800 0.06
63 100 20 18 �826670 10 �394260 0.12
64 100 50 17 �6534.2 5 �6475.6 8.97
65 150 20 20 �220760 4 �185220 �1.66
66 150 30 28 �170300 5 �170330 15.66
67 150 50 13 �22546 11 �24760 4.69
68 200 20 13 �109500 5 �109510 1.71
69 200 30 19 �152620 8 �152650 �8.29

� Table 3 shows that in general Algorithm 3 is more efficient than Algorithm 2.
Note that the choice of �i, i = 1; . . . ; 4 (resp. �) for algorithms 3 (res. algorithm
2) is very important.
� Table 4 indicates that the solutions provided by the active set method are very

bad. Moreover we observe that Algorithm 4 is faster than Algorithm 2 while the
approximate optimal value given by the latter is smaller than that provided by the
former. � DCA terminates very rapidly; the average number of iterations is 7, 26,
19 and 7 for Algorithms 1, 2, 3 and 4 respectively.
� DCA can work with problems where the number of both convex and concave

variable may be large.

Acknowledgements

We would like to thank the Referee for his careful reading and constructive criti-
cism. His useful comments clarified the presentation and corrected some inaccura-
cies.

jogo314.tex; 7/08/1997; 12:43; v.7; p.28



LINEARLY CONSTRAINED INDEFINITE QUADRATIC PROBLEMS 281

Appendix

A Decomposition Method for Solving Problem (IQP3) ([29])

One considers Problem (IQP3)

(IQP3) min
�
f(x; y) = f1(x) + f2(y) =

1
2
h ~Cx; xi+ hc; xi

+
sX

i=1

�
diyi �

1
2
�iy

2
i

�
: (x; y) 2 


�

with �i > 0.
The method presented here should be efficient for large-scale (IQP3) problems,

when the number of variables that enter the concave part of the objective function
is small in comparison with the total number of variables. The separability of
the concave part motivates the use of rectangular subdivision. First a rectangular
domainR0 � R

s is constructed that contains the projection of
 in the y-space. This
rectangle is then divided into smaller and smaller subrectangles. For each rectangle
R a convex underestimating function f1(x)+�(y) of the original objective function
f(x; y) is constructed and the convex minimization problem

minff1(x) + �(y) : (x; y) 2 
; y 2 Rg:

is solved. The solution of this convex program gives both a lower and upper bound
for the optimal value of the problem

minff1(x) + f2(y) : (x; y) 2 
; y 2 Rg:

The branch-and-bound procedure is then applied to discard regions which cannot
contain any global minimizer and eventually to locate an optimal solution.

To construct the smallest rectangular domain R0 � R
s which contain the

projection of 
 on the y-space, one solves s linear programming problems

maxfyi s.t. (x; y) 2 
g; i = 1; . . . ; s

to get optimal values L0
i , i = 1; . . . ; s. The rectangular domain can then be

expressed as

R0 = fy : 0 � yi � L0
ig:

a) Lower bounding
Let R = fy : li � yi � Lig be a rectangle in Rs . As usual, one has the convention
that the infinitum of an empty set is +1.

A standard method for lower bounding in branch and bound algorithms is
to use convex underestimators of the objective function. Since concave function
f2(y) =

Ps
i=1 qi(yi) is separable, its convex envelope over a rectangleR is simply
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the sum of affine function�Ri(yi) that agrees with qi at the endpoints of the segment
[li; Li], i.e. the function (cf. [11], [27], [25], etc.)

�R(y) =
sX

i=1

�Ri(yi) (24)

where �Ri(yi) is given explicitly by

�Ri(yi) =

�
di �

1
2
�i(li + Li)

�
yi +

1
2
�iliLi: (25)

So f1(x) + �R(y) is a convex underestimating function of f(x; y) over the
domain f(x; y) 2 R

n � R
s : (x; y) 2 
; y 2 Rg. The solution to the convex

program

(RCP) minff1(x) + �R(y) : (x; y) 2 
; y 2 Rg

provides a point (xR; wR) such that

f1(x
R) + �R(w

R) � minff(x; y) : (x; y) 2 
; y 2 Rg � f(xR; wR) (26)

i.e. �(R) = f1(x
R) +�R(w

R) is a lower bound for f over R and f(xR; wR) is an
upper bound for the global optimal value f�.

b) Normal rectangular subdivision (NRS)
The concept of a normal rectangular subdivision as introduced by Tuy (see e.g.

Horst-Tuy [10] (Definition VII.7)).
Let R = fy : li � yi � Lig be a rectangle and let �R(y) be the above defined

convex underestimator of f2(y) over R. Denote by (xR; wR) and �(R) an optimal
solution and the optimal value, respectively, of the convex program (RCP ).

Consider now a rectangular subdivision process in which a rectangle is subdi-
vided into subrectangles by means of a finite number of hyperplanes parallel to
certain facets of the orthant Rs+ . Such a process generates a family of rectangles
which can be represented by a tree with root R0 and such that a node is a suc-
cessor of another one if and only if it represents an element of the partition of
the rectangle corresponding to the latter node. An infinite path in this tree corre-
sponds to an infinite nested sequence of rectangles Rh; h = 0; 1; . . . For each h let
(xh; wh) = (xRh ; wRh); �h(y) = �Rh(y).

DEFINITION 1. A nested sequence Rh is said to be normal if

limh!1jf2(w
h)� �h(w

h)j = 0: (27)

A rectangular subdivision process is said to be normal if any infinite nested sequence
of rectangles that it generates is normal.
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Suppose now that an NRS process has been defined. One can construct the following
branch and bound algorithm for solving (IQP3).

c) Algorithm ALGG
Initialization: Compute the enclosing rectangle R0 by solving s linear programs.
Compute �R0 and solve the convex program

(R0CP) minff1(x) + �R0(y) : (x; y) 2 
; y 2 R0g

to obtain an optimal solution (xR0 ; wR0) and the optimal value �(R0). Set P0 =
fR0g; �0 = �(R0); �0 = f(xR0 ; wR0) and (x0; y0) = (xR0 ; wR0).
Iteration k = 0; 1; 2; . . .:
k.1. Delete allR 2 Rk with �(R) � �k. LetPk be the set of remaining rectangles.

If Pk = ; stop: (xk; yk) is a global optimal solution.

k.2. Otherwise, select Rk 2 Pk such that

�k := �(Rk) = minf�(R) : R 2 Pkg:

and subdivide Rk into Rk1; Rk2 according to the chosen normal rectangular
subdivision process.

k.3. For each Rk1; Rk2 compute �Rki and solve

(RkiCP) minff1(x) + �Rki(y) : (x; y) 2 
; y 2 Rkig

to obtain (xRki ; wRki) and �(Rki).

k.4. Set (xk+1; yk+1) to the best of the feasible solutions known so far and update
�k+1.

k.5. Set Pk+1 := (PknRk) [ fRk1; Rk2g and go to the next iteration.

Normal rectangular subdivision process Some methods for constructing normal
rectangular subdivision (NRS) process are discussed in [29]. We present here the
w-subdivision process which was shown to be the best among three types of normal
rectangular subdivision given in [29].

w-subdivision: (Falk and Soland [5])
For the selected Rk; �(Rk) < f(xk; yk), hence,

f2(w
k)� �k(w

k) > 0:

Choose an index ik satisfying

ik 2 arg max
i
ff2i(w

h
i )� �ki(w

k
i )g

and subdivide Rk into two subrectangles

Rk;1 = fy 2 Rk : yik � wk
ik
g; Rk;2 = fy 2 Rk : yik � wk

ik
g:
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THEOREM 10. (i) If the Algorithm terminates at iteration k then (xk; yk) every
accumulation point of which is a global optimal solution of (IQP2), and

�k & f�; �k % f�:
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2. Le Thi Hoai An, Pham Dinh Tao & Le Dung Muu (1996), D.c. optimization approach for
optimizing over the efficient set. Operations Research Letters 19, 117–128.

3. A. Bronsted (1983), An Introduction to Convex Polytopes, Springer-Verlag, New York.
4. R. Durier (1988), On locally polyhedral convex functions. In Trends in Mathematical Mathe-
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